주요메뉴 바로가기 본문 바로가기

주메뉴

IBS Conferences

신희섭

DirectorSHIN Hee-Sup

  • SHIN Hee-Sup DirectorSHIN Hee-Sup
  • HUR Won-do Group LeaderHUR Won-do

To suggest medical treatments for dementia and depression

Contact Info

Tel. +82-42-861-7012~3

Tel. +82-42-861-7060

Address

IBS (Center for Cognition and Sociality)
KAIST Bd. E18-3
291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon

Director
Director SHIN Hee-Sup

Director SHIN Hee-Sup

Doctor Shin is the director of the Center for Cognition and Sociality, established in July 2012. He earned his M.D. from Seoul National University before getting his Ph.D. from Cornell University in 1983. He returned to Korea and in 1991 and was appointed as a professor at POSTECH. In 2001 he became a principal research scientist at the Korea Institute of Science and Technology before taking up his position in IBS.

Introduction
graphic image for Research Center

“Understanding the human mind and behavior through the study of the brain”

Focusing on the genetic and neurobiological mechanisms of comprehensive brain activities

  • - Studying the neural mechanism on consciousness, cognition and sociality
  • - Studying on signaling protein functions in live cells and animals through bio-imaging techniques
Main research activities

The thalamocortical circuit is a key component in regulating consciousness. We are trying to understand how the circuit controls consciousness, with a focus on the network interaction between different brain regions. We are particularly interested in how the contrasting firing modes of different thalamic nuclei control brain activity. We use a variety of tools in addition to genetically-modified mice. One objective is to understand the mechanism at the molecular, cellular, circuit, and system level.  Knowledge obtained from such studies will provide a better understanding of sleep disorders, absence seizures, and conditions of impaired control of consciousness. It will also enable us to build better tools to treat conditions and disorders.

Thalamus and Emotion Regulation

We have recently developed an observational fear-learning model using mice, and discovered that thalamocortical interactions have a pivotal role in the fear-learning process. We have also found that these regions of the brain are associated with the extinction of fear memory. Thus, our research has pinpointed the role that the thalamic nuclei in neural circuits play in controlling emotion. We will further define these circuits using multidisciplinary approaches. Our research projects will provide a basis for treatment of cognitive disorders, including PTSD.

Social Brain

Social behavior is the outcome of integrated information-processing systems, including cognition, perception, emotion, decision-making processes, and so on. We have developed a novel system for studying social interaction behavior among mice. Using this system, we can for the very first time induce and analyze different types of social behavior in mice. For example, we can study cooperation, competition, decision-making in social dilemmas, and prosocial behavior. Further studies will examine the respective molecular, cellular, and circuit mechanisms present in types of social behavior by using all the available tools in the mouse system.

Neural/Cancer Signaling

Our ongoing research includes elucidating signal mechanisms and cellular functions in cancer and neuronal cells through bio-imaging techniques. Cell proliferation, migration, metastasis, and neuronal networks are controlled by interactions among thousands of signaling proteins and second messengers. We are currently working on pinpointing disease mechanisms at the molecular level by visualizing and manipulating the complex signaling pathways. To achieve our goals we have developed novel bio-imaging platforms. Such techniques include monitoring protein-protein interactions through biosensors, and observing the light-inducible spatiotemporal control of protein functions in live cells or animals. Light-inducible spatiotemporal control systems provide a particularly convenient way to manipulate various receptors, second messengers, and signaling proteins. We therefore expect our light-inducible systems to be developed for therapeutic platforms in the future.

Organization

Organization

Main research results
  • Optogenetically Induced Sleep Spindle Rhythms Alter Sleep Architectures in Mice
    (PNAS, 2012)
  • Sleep Spindles are Generated in the Sbsence of T-type Calcium Channel-Mediated Low-Threshold Burst Firing of Thalamocortical Neurons
    (PNAS, 2013)
  • T-type Ca2+ Channels in Absence Epilepsy
    (PNAS, 2014)
  • Reversible Protein Inactivation by Optogenetic Trapping in Cells
    (Nat Methods, 2014)
  • Light-Inducible Receptor Tyrosine Kinases that Regulate Neurotrophin Signalling
    (Nat Commun, 2014)
  • Optogenetic Control of Endogenous Ca2+ Channels in Vivo
    (Nature Biotechnology, 2015)
Personnel
Personnel status
Total67
Gender40(Male), 27(Female)
Korean/ International64(Korean), 3(International)
Degree
Position

As of Dec. 2015

Research

Are you satisfied with the information on this page?

Content Manager
Center for Cognition and Sociality : Yang Ji Eun   042-861-7012
Last Update 2016-11-09 09:58