COVID19 – Mathematical Modeling and Machine Learning

B305 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

Abstract This presentation include the following two topics. First of all, we consider a spread model of COVID-19 with time-dependent parameters via deep learning. We developed a SIR model with time-dependent parameters via deep learning methods. Furthermore, we validated the model with the conventional model to confirm its convergent nature. Next, We also developed a

The Graph convolutional Networks (GCN) with Persistent Homology and its application 1/4

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

(1) GCN and its Application. We introduce the GCN by reviewing the monumental paper " Semi-Supervised Classification with the Graph Convolutional Networks", ICLR 2018 by Kipf and Welling. We are going to much detail the algorithm of message aggregation and passings and learning processes. Code ; https://github.com/tkipf/gcn (2) Graph Attention networks(GAT) and its Applications. Bengio

The Graph convolutional Networks (GCN) with Persistent Homology and its application 2/4

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

Simplicial Complexes, Persistent Homology and Persistent Diagrams. After a brief review on the persistent homology( Cohen-Steiner, Edelsbrunner, Harer,2010), we discuss constructive procedures persistent diagrams from the persistent homology. Code; 9 software packages generating persistent homology are introduced at " A roadmap for the computation of persistent homology", EPJ Data Science, a Springer Open Journal.

The Graph convolutional Networks (GCN) with Persistent Homology and its applications 3/4

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

Neural Networks with the Persistent Diagrams and Graph Classification. We introduce the first paper connecting persistent diagrams to the Neural Networks by Carrier et al," A neural Network Layer for Persistent Diagrams and New Graph Topological Signatures, 2019, arXiv. We are going to analyse the End-to-End algorithm and learning processes and applications. Code; tensorflow at

Methods for characterizing circadian physiology from wearables

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

Abstract Non-invasive data collection in real-world settings with wearables provides a new opportunity for characterizing daily physiology. However, accurate and efficient characterization remains an open problem because the complex autoregressive noise of the data makes it challenging to use a simple and efficient method for inference of clock proxies, least squares method. In this talk,

디지털 표현형의 진단 및 치료적 적용

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

디지털 표현형의 진단 및 치료적 적용 조철현(세종충남대학교병원) 디지털 표현형(digital phenotype)은 각 개개인이 일상생활에서 사용하는 다양한 디지털 기기를 통해서 실시간으로 얻어지는 다양한 형태의 데이터를 뜻하는 것으로, 디지털 기기의 사용이 보편화되면서 의료적 적용에 대한 가능성이 한층 높아지고 있다. 디지털 표현형은 이전에는 측정(measure)하기 힘들었던 영역에 대한 측정을 가능케 함으로써, 의학적 평가나 진단적인 측면에서 임상적 함의를 갖는다고 볼 수

Stem cell dynamics in the intestine and stomach

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

In adult tissues, stem cells undergo clonal competition because they proliferate while the stem cell niche provides limited space. This clonal competition allows the selection of healthy stem cells over time as unfit stem cells tend to lose from the competition. It could also be a mechanism to select a supercompetitor with tumorigenic mutations, which

Structure-based analysis of chemical reaction networks 1/2

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

Abstract: Inside living cells, chemical reactions form a large web of networks. Understanding the behavior of those complex reaction networks is an important and challenging problem. In many situations, it is hard to identify the details of the reactions, such as the reaction kinetics and parameter values. It would be good if we can clarify

Structure-based analysis of chemical reaction networks 2/2

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

Inside living cells, chemical reactions form a large web of networks. Understanding the behavior of those complex reaction networks is an important and challenging problem. In many situations, it is hard to identify the details of the reactions, such as the reaction kinetics and parameter values. It would be good if we can clarify what

다중 오믹스 분야의 현황 및 유전자-환경 상호 모델링의 필요성 (Current status of multi-omics research field and necessity of gene-by-environment (GxE) interaction modeling)

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

본 발표에서는 다양한 기초 생명-의학 분야에서 생성되고 있는 오믹스 자료의 연구 개발 현황에 대해서 다룰 예정이다. 보다 큰 규모로, 보다 빠르게, 보다 정확하게, 보다 정밀하게 라는 궁극적인 목표하에 이뤄지고 있는 오믹스 자료의 진화에 발맞춰, 이를 분석하는 수리통계적 모형 역시 진화하고 있다. 그 중, 이번 발표에서는 미국의 초 대형 정밀의료 프로젝트인 TopMed에서 진행하고 있는 COPD에 관한

Introduction to Bayesian Variable Selection.  

B378 Seminar room, IBS 55 Expo-ro Yuseong-gu, Daejeon

Abstract: Variable selection is an approach to identifying a set of covariates that are truly important to explain the feature of a response variable. It is closely connected or belongs to model selection approaches. This talk provides a gentle introduction to Bayesian variable selection methods. The basic notion of variable selection is introduced, followed by several Bayesian approaches with a simple application example.

IBS 의생명수학그룹 Biomedical Mathematics Group
기초과학연구원 수리및계산과학연구단 의생명수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Biomedical Mathematics Group (BIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2021. All rights reserved.