FoodSeq: Using Genomics to Track and Study Diet – Lawrence David

Conference room, (B109) Daejeon, Daejeon, Korea, Republic of

Abstract Dietary assessment is crucial for understanding the relationship between diet and health. Yet traditional recall-based methods for tracking diet often face challenges like participant compliance and accurate recall. To address these issues, our lab at Duke University has developed FoodSeq, a genomic approach to track food intake through DNA sequencing of stool samples. In

Boolean modelling as a logic-based dynamic approach in systems medicine – Kevin Spinicci

In this talk, we discuss the paper "Boolean modelling as a logic-based dynamic approach in systems medicine" by Ahmed Abdelmonem Hemedan et al., Computational and Structural biotechnology journal (2022). Abstract  Molecular mechanisms of health and disease are often represented as systems biology diagrams, and the coverage of such representation constantly increases. These static diagrams can

Simplified descriptions of stochastic oscillators – Benjamin Lindner

ZOOM ID: 997 8258 4700 (Biomedical Mathematics Online Colloquium) (pw: 1234)

Abstract Many natural systems exhibit oscillations that show sizeable fluctuations in frequency and amplitude. This variability can arise from a wide variety of physical mechanisms. Phase descriptions that work for deterministic oscillators have a limited applicability for stochastic oscillators. In my talk I review attempts to generalize the phase concept to stochastic oscillations, specifically, the

Koopman operator approach to complex rhythmic systems – Hiroya Nakao

ZOOM ID: 997 8258 4700 (Biomedical Mathematics Online Colloquium) (pw: 1234)

Abstract Spontaneous rhythmic oscillations are widely observed in real-world systems. Synchronized rhythmic oscillations often provide important functions for biological or engineered systems. One of the useful theoretical methods for analyzing rhythmic oscillations is the phase reduction theory for weakly perturbed limit-cycle oscillators, which systematically gives a low-dimensional description of the oscillatory dynamics using only the

IBS 의생명수학그룹 Biomedical Mathematics Group
기초과학연구원 수리및계산과학연구단 의생명수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Biomedical Mathematics Group (BIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2021. All rights reserved.