Deep learning for universal linear embeddings of nonlinear dynamics – Hyukpyo Hong

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper "Deep learning for universal linear embeddings of nonlinear dynamics" by B. Lusch, J. N. Kutz, and S. Brunton, Nat. Comm. 2018. Abstract  Identifying coordinate transformations that make strongly nonlinear dynamics approximately linear has the potential to enable nonlinear prediction, estimation, and control using linear theory. The Koopman operator

Large language models for scientific discovery in molecular property prediction – Aqsa Awan

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper "Large language models for scientific discovery in molecular property prediction" by Yizhen Zheng et.al., nature machine intelligence, 2025. Abstract Large language models (LLMs) are a form of artificial intelligence system encapsulating vast knowledge in the form of natural language. These systems are adept at numerous complex tasks including

Data splitting to avoid information leakage with DataSAIL – Myna Lim

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper, "Data splitting to avoid information leakage with DataSAIL" by Roman Joeres, et al., Nature Communications, 2025. Abstract Information leakage is an increasingly important topic in machine learning research for biomedical applications. When information leakage happens during a model’s training, it risks memorizing the training data instead of learning

U Jin Choi – Simulation-Free Schrodinger Bridges Via Score and Flow Matching (by Tong et al, AISTATS 2024).

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

Abstract: 임의로 정한 Initial Distribution Q1 와 Terminal Distribution Q2가 주어 졌을 때 시점과 종점 사이의 contiinious time상에  정의 되는 의미 있는 최적의 Probability Path Measure P 를 찾는 Schrodinger Bridges Problem 은 자연과학,공학, 의료 및 생명공학,경제학 및 금융공학 등의 여러 분야에 나타나는 모델들을 푸는 Unified AI Model 사용 되고 있습니다. Schrodinger Bridges Problem은  유일한 해가 존재 하는 정리는( Follmer,1988)  증명 되었으므로 데이터를 이용하여  Neural Network Models에 대한 효율적으로 학습방법,  빠른 알고리즘 연구에 집중 되고 있습니다. Tong et al 연구팀은 2023년 부터 ODE에 기반한 획기적인 생성모델인  Flow Matching for Generative Modeling 기법을  SDE 기반 Diffusion Generative Models에 접목하여 Schrodinger Bridges Problem의 해법을 제시하였습니다.

Jihun Han – Bridging PDEs and machine learning

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

Abstract: This talk consists of two main parts. In the first part, I will discuss a numerical method for solving PDEs based on a stochastic representation of the solution. This approach captures the underlying particle dynamics associated with the physical processes described by the PDE. By aggregating information from the particles’ collective exploration, the method

Machine learning methods trained on simple models can predict critical transitions in complex natural systems – Shingo Gibo

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper "Machine learning methods trained on simple models can predict critical transitions in complex natural systems" by  Smita Deb, Sahil Sidheekh, Christopher F. Clements, Narayanan C. Krishnan, and Partha S. Dutta, in Royal Society Open Science, (2022). Abstract:  Forecasting sudden changes in complex systems is a critical but challenging task, with previously developed methods varying widely in their reliability. Here we develop a novel detection method, using simple theoretical models to train a deep neural network to detect critical transitions—the Early Warning Signal Network (EWSNet). We then demonstrate that this network, trained on simulated data, can reliably predict observed real-world transitions in systems ranging from rapid climatic change to the collapse of ecological populations. Importantly, our model appears to capture latent properties in time series missed by previous warning signals approaches, allowing us to not only detect if a transition is approaching, but critically whether the collapse will be catastrophic or non-catastrophic. These novel properties mean EWSNet has the potential to serve as an indicator of transitions across a broad spectrum of complex systems, without requiring information on the structure of the system being monitored. Our work highlights the practicality of deep learning for addressing further questions pertaining to ecosystem collapse and has much broader management implications.

Optimal transport for generating transition states in chemical reactions – Gyuyoung Hwang

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper "Optimal transport for generating transition states in chemical reactions" by C. Duan et.al., Nat. Machine. Intelligence, 2025. Abstract Transition states (TSs) are transient structures that are key to understanding reaction mechanisms and designing catalysts but challenging to capture in experiments. Many optimization algorithms have been developed to search

scGPT: toward building a foundation model for single-cell multi-omics using generative AI – Hyun Kim

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper "scGPT: toward building a foundation model for single-cell multi-omics using generative AI" by Haotian Cui, et.al. Nature Methods, 2024. Abstract Generative pretrained models have achieved remarkable success in various domains such as language and computer vision. Specifically, the combination of large-scale diverse datasets and pretrained transformers has emerged

Jae-Kwang Kim – Weight calibration for causal inference and transfer learning

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

Abstract: Weight calibration is a popular technique in handling covariate-shift problem in causal inference. It can be viewed as a dual optimization problem for incorporating the implicit regression model. We introduce the generalized entropy calibration as a general tool for weight calibration. Several interesting applications will be introduced in the context of causal inference. Furthermore, weight calibration can be used to transfer learning, which combines information from two different samples, one for source data and the other for target data.

Effective Markovian dynamics method of solving non-Markovian dynamics of stochastic gene expression – Dongju Lim

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper "Effective Markovian dynamics method of solving non-Markovian dynamics of stochastic gene expression" by Youming Li and Chen Jia, Physical Review Letters, to appear. Abstract Experiments have shown that over 10% of proteins are degraded non-exponentially. Gene expression models for non-exponentially degraded proteins are notoriously difficult to solve since the underlying

Quantifying the energy landscape of high-dimensional oscillatory systems by diffusion decomposition – Eui Min Jeong

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

In this talk, we discuss the paper "Quantifying the energy landscape of high-dimensional oscillatory systems by diffusion decomposition" by S. Bian et.al., Cell Reports Physical Science, 2025. Abstract High-dimensional networks producing oscillatory dynamics are ubiquitous in biological systems. Unraveling the mechanism of oscillatory dynamics in biological networks with stochastic perturbations becomes of paramount significance. Although

Jooyoung Hahn – Topological Data Analysis with two applications: Tumor Microenvironment and 2D Chromatography with High-Resolution Mass Spectrometry

B232 Seminar Room, IBS 55 Expo-ro Yuseong-gu, Daejeon, Daejeon, Korea, Republic of

Abstract  Topological Data Analysis (TDA) has emerged as a powerful framework for uncovering meaningful structure in high-dimensional, complex datasets. In this talk, we present two applications of TDA in analyzing patterns, one in the tumor microenvironment (TME) and the other in high-resolution chemical profiling. In the first case, we develop a TDA-based framework to quantify malignant-immune cell interactions

IBS 의생명수학그룹 Biomedical Mathematics Group
기초과학연구원 수리및계산과학연구단 의생명수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Biomedical Mathematics Group (BIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2021. All rights reserved.