We will discuss about “Estimating and Assessing Differential Equation Models with Time-Course Data”, Wong, Samuel WK, Shihao Yang, and S. C. Kou, arXiv preprint arXiv:2212.10653 (2022). Abstract Ordinary differential equation (ODE) models are widely used to describe chemical or biological processes. This article considers the estimation and assessment of such models on the basis of time-course …
Journal Club
Calendar of Events
S
Sun
|
M
Mon
|
T
Tue
|
W
Wed
|
T
Thu
|
F
Fri
|
S
Sat
|
---|---|---|---|---|---|---|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
We will discuss about “Predicting Chronic Stress among Healthy Females Using Daily-Life Physiological and Lifestyle Features from Wearable Sensors”, Magal, Noa, et al., Chronic Stress 6 (2022): 24705470221100987. Abstract Background: Chronic stress is a highly prevalent condition that may stem from different sources and can substantially impact physiology and behavior, potentially leading to impaired mental and … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
We will discuss about “Characterizing possible failure modes in physics-informed neural networks”, Krishnapriyan, Aditi, et al., Advances in Neural Information Processing Systems 34 (2021): 26548-26560. Abstract Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to incorporate physical domain knowledge as soft constraints on an empirical loss … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
We will discuss about “Dynamical information enables inference of gene regulation at single-cell scale”, Zhang, Stephen Y., and Michael PH Stumpf., bioRxiv (2023): 2023-01. Abstract Cellular dynamics and emerging biological function are governed by patterns of gene expression arising from networks of interacting genes. Inferring these interactions from data is a notoriously difficult inverse problem … |
0 events,
|