We will discuss about "Modeling polypharmacy side effects with graph convolutional networks", Zitnik, Agrawal, and Leskovec, Bioinformatics, 2018 Motivation The use of drug combinations, termed polypharmacy, is common to treat patients with complex diseases or co-existing conditions. However, a major consequence of polypharmacy is a much higher risk of adverse side effects for the patient. …
Journal Club
Calendar of Events
S
Sun
|
M
Mon
|
T
Tue
|
W
Wed
|
T
Thu
|
F
Fri
|
S
Sat
|
---|---|---|---|---|---|---|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Abstract: Genetic feedback loops can be used by cells as a means to regulate internal processes or keep track of time. It is often thought that, for a genetic circuit to display self-sustained oscillations, a degree of cooperativity is needed in the binding and unbinding of actor species. This cooperativity is usually modeled using a … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Abstract: The discovery of governing equations from scientific data has the potential to transform data-rich fields that lack well-characterized quantitative descriptions. Advances in sparse regression are currently enabling the tractable identification of both the structure and parameters of a nonlinear dynamical system from data. The resulting models have the fewest terms necessary to describe the … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Abstract: Consider a biomolecular reaction network that exhibits robust perfect adaptation to disturbances from several parallel sources. The well-known Internal Model Principle of control theory suggests that such systems must include a subsystem (called the “internal model”) that is able to recreate the dynamic structure of the disturbances. This requirement poses certain structural constraints on the network … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
We will discuss about "Physics-informed learning of governing equations from scarce data", Chen et al., Nature Communications, 2021 Abstract: Extracting governing equations from data is a central challenge in many diverse areas of science and engineering. Data are abundant whereas models often remain elusive, as in climate science, neuroscience, ecology, finance, and epidemiology, to name … |
0 events,
|