We will discuss about “Stiff-PINN: Physics-Informed Neural Network for Stiff Chemical Kinetics”, Ji et al., The Journal of Physical Chemistry A, 2020 The recently developed physics-informed neural network (PINN) has achieved success in many science and engineering disciplines by encoding physics laws into the loss functions of the neural network such that the network not …
Journal Club
Calendar of Events
S
Sun
|
M
Mon
|
T
Tue
|
W
Wed
|
T
Thu
|
F
Fri
|
S
Sat
|
---|---|---|---|---|---|---|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
We will discuss about "Information Integration and Energy Expenditure in Gene Regulation", Estrada et al., Cell, 2016 Abstract: The quantitative concepts used to reason about gene regulation largely derive from bacterial studies. We show that this bacterial paradigm cannot explain the sharp expression of a canonical developmental gene in response to a regulating transcription factor … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
We will discuss about "The Generalized Multiset Sampler", Kim and MacEachern, The Journal of Computation and Graphical Statistics, 2021 Abstract: The multiset sampler, an MCMC algorithm recently proposed by Leman and coauthors, is an easy-to-implement algorithm which is especially well-suited to drawing samples from a multimodal distribution. We generalize the algorithm by redefining the multiset … |
0 events,
|