Loading Events

« All Events

:

Machine learning methods trained on simple models can predict critical transitions in complex natural systems – Shingo Gibo

June 27 @ 2:00 pm - 4:00 pm KST

https://www.ibs.re.kr, 55 Expo-ro Yuseong-gu
Daejeon, Daejeon 34126 Korea, Republic of

Speaker

In this talk, we discuss the paper “Machine learning methods trained on simple models can predict critical transitions in complex natural systems” by  Smita Deb, Sahil Sidheekh, Christopher F. Clements, Narayanan C. Krishnan, and Partha S. Dutta, in Royal Society Open Science, (2022).

Abstract: 

Forecasting sudden changes in complex systems is a critical but challenging task, with previously developed methods varying widely in their reliability. Here we develop a novel detection method, using simple theoretical models to train a deep neural network to detect critical transitions—the Early Warning Signal Network (EWSNet). We then demonstrate that this network, trained on simulated data, can reliably predict observed real-world transitions in systems ranging from rapid climatic change to the collapse of ecological populations. Importantly, our model appears to capture latent properties in time series missed by previous warning signals approaches, allowing us to not only detect if a transition is approaching, but critically whether the collapse will be catastrophic or non-catastrophic. These novel properties mean EWSNet has the potential to serve as an indicator of transitions across a broad spectrum of complex systems, without requiring information on the structure of the system being monitored. Our work highlights the practicality of deep learning for addressing further questions pertaining to ecosystem collapse and has much broader management implications.

Details

Date:
June 27
Time:
2:00 pm - 4:00 pm KST
Event Category:

Venue

B232 Seminar Room, IBS
55 Expo-ro Yuseong-gu
Daejeon, Daejeon 34126 Korea, Republic of
View Venue Website

Organizer

Jae Kyoung Kim
Email
jaekkim@kaist.ac.kr
IBS 의생명수학그룹 Biomedical Mathematics Group
기초과학연구원 수리및계산과학연구단 의생명수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Biomedical Mathematics Group (BIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2021. All rights reserved.