Loading Events

« All Events

:

Exploiting heart rate variability for driver drowsiness detection using wearable sensors and machine learning – Myna Lim

September 26 @ 10:00 am - 11:30 am KST

https://www.ibs.re.kr, 55 Expo-ro Yuseong-gu
Daejeon, Daejeon 34126 Korea, Republic of
+ Google Map

Speaker

Myna Lim
KAIST

In this talk, we discuss the paper “Exploiting heart rate variability for driver drowsiness detection using wearable sensors and machine learning” by Zakwan AlArnaout et. al, Scientific Reports, 2025.

Abstract

Driver drowsiness is a critical issue in transportation systems and a leading cause of traffic accidents. Common factors contributing to accidents include intoxicated driving, fatigue, and sleep deprivation. Drowsiness significantly impairs a driver’s response time, awareness, and judgment. Implementing systems capable of detecting and alerting drivers to drowsiness is therefore essential for accident prevention. This paper examines the feasibility of using heart rate variability (HRV) analysis to assess driver drowsiness. It explores the physiological basis of HRV and its correlation with drowsiness. We propose a system model that integrates wearable devices equipped with photoplethysmography (PPG) sensors, transmitting data to a smartphone and then to a cloud server. Two novel algorithms are developed to segment and label features periodically, predicting drowsiness levels based on HRV derived from PPG signals. The proposed approach is evaluated using real-driving data and supervised machine learning techniques. Six classification algorithms are applied to labeled datasets, with performance metrics such as accuracy, precision, recall, F1-score, and runtime assessed to determine the most effective algorithm for timely drowsiness detection and driver alerting. Our results demonstrate that the Random Forest (RF) classifier achieves the highest testing accuracy (86.05%), precision (87.16%), recall (93.61%), and F1-score (89.02%) with the smallest mean change between training and testing datasets (-4.30%), highlighting its robustness for real-world deployment. The Support Vector Machine with Radial Basis Function (SVM-RBF) also shows strong generalization performance, with a testing F1-score of 87.15% and the smallest mean change of -3.97%. These findings suggest that HRV-based drowsiness detection systems can be effectively integrated into Advanced Driver Assistance Systems (ADAS) to enhance driver safety by providing timely alerts, thereby reducing the risk of accidents caused by drowsiness.

Details

Date:
September 26
Time:
10:00 am - 11:30 am KST
Event Category:

Organizer

Jae Kyoung Kim
Email
jaekkim@kaist.ac.kr

Venue

B232 Seminar Room, IBS
55 Expo-ro Yuseong-gu
Daejeon, Daejeon 34126 Korea, Republic of
+ Google Map
View Venue Website
IBS 의생명수학그룹 Biomedical Mathematics Group
기초과학연구원 수리및계산과학연구단 의생명수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Biomedical Mathematics Group (BIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2021. All rights reserved.