Loading Events

« All Events

:

Coarse-graining network flow through statistical physics and machine learning – Gyuyoung Hwang

October 24 @ 10:00 am - 12:00 pm KST

https://www.ibs.re.kr, 55 Expo-ro Yuseong-gu
Daejeon, Daejeon 34126 Korea, Republic of
+ Google Map

Speaker

In this talk, we discuss the paper “Coarse-graining network flow through
statistical physics and machine learning” by Z. Zhang, et al., Nat. Comm., 2025.

Abstract

Information dynamics plays a crucial role in complex systems, from cells to societies. Recent advances in statistical physics have made it possible to capture key network properties, such as flow diversity and signal speed, using entropy and free energy. However, large system sizes pose computational challenges. We use graph neural networks to identify suitable groups of components for coarse-graining a network and achieve a low computational complexity, suitable for practical application. Our approach preserves information flow even under significant compression, as shown through theoretical analysis and experiments on synthetic and empirical networks. We find that the model merges nodes with similar structural properties, suggesting they perform redundant roles in information transmission. This method enables low-complexity compression for extremely large networks, offering a multiscale perspective that preserves information flow in biological, social, and technological networks better than existing methods mostly focused on network structure.

Details

Date:
October 24
Time:
10:00 am - 12:00 pm KST
Event Category:

Organizer

Jae Kyoung Kim
Email
jaekkim@kaist.ac.kr

Venue

B232 Seminar Room, IBS
55 Expo-ro Yuseong-gu
Daejeon, Daejeon 34126 Korea, Republic of
+ Google Map
View Venue Website
IBS 의생명수학그룹 Biomedical Mathematics Group
기초과학연구원 수리및계산과학연구단 의생명수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Biomedical Mathematics Group (BIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
Copyright © IBS 2021. All rights reserved.