주요메뉴 바로가기 본문 바로가기

주메뉴

IBS Conferences
Gel to Fight Rheumatoid Arthritis 게시판 상세보기
Title Gel to Fight Rheumatoid Arthritis
Embargo date 2017-10-11 20:00 Hits 150
Research Center Center for Self-assembly and Complexity
Press release
att.

Gel to Fight Rheumatoid Arthritis

- IBS scientists developed a potentially therapeutic gel, which activates in the presence of nitric oxide, absorbs excess fluids and delivers drugs -

IBS scientists at the Center for Self-Assembly and Complexity, within the Institute for Basic Science (IBS), invented a hydrogel to fight rheumatoid arthritis and other diseases. Published in Advanced Materials, this jelly-like material could be used to absorb extra fluids in swelling joints and release drugs.

Rheumatoid arthritis (RA) is a long-term disease that causes inflammation and deformity of the joints, and affects about 1% of the world population. In this autoimmune condition, the body's immune system attacks the soft tissue of the joints, leading to an accumulation of synovial fluid. While this clear fluid lubricates and nourishes the joints, its excess causes swelling and pain.

Immune cells at the inflamed joints are the predominant source of nitric oxide (NO), a gas with various physiological functions. “Nitric oxide is like a double-edge sword. It regulates inflammation and protects our body by killing external pathogens. However, when in excess, it is toxic and may cause RA, as well as other autoimmune diseases, cardiovascular diseases, and cancer,” explains the group leader, KIM Won Jong. Current RA treatments are based on anti-inflammatory drugs that relieve pain and inflammation, but IBS scientists tried a more challenging approach by targeting NO itself. NO is a transient gas, which stays in circulation for less than 10 seconds, before binding to other molecules.

The research team developed a gel responsive to such fugitive molecules, using acrylamide as a base material and a new crosslinker to keep it in place. Unlike the monomeric form, polymeric acrylamide hydrogel has little toxicity and can contain a large amount of water. In addition, the cross-linking agent (NOCCL) forms bridges between the acrylamide molecules creating a net, which can trap drug molecules inside. When NO cleaves the NOCCL bridges, the gel changes its structure, frees the drug and absorbs new liquid.


▲ Figure 1: Hydrogel responsive to nitric oxide.IBS scientists developed a hydrogel made of polymeric acrylamide (blue spaghetti) linked with crosslinkers (black), which can accommodate drug molecules (purple stars) within its mesh (grey). In the presence of nitric oxide (red), the linker is cleaved and the drug molecules can be released. At the same time, the gel absorbs fluid from the surroundings and swells in size.

Although this is a preliminary study, the team confirmed that NOCCL crosslinking agent can selectively and sensitively react with NO. The scientists are now working on a nano-sized hydrogel in a RA mouse model. Moreover, these type of hydrogels could be useful for other diseases characterized by overexpression of NO, or maybe even as environmental sensors, since NO is also a polluting gas emitted in vehicle exhaust.

Letizia Diamante

Notes for editors

- References
Junghong Park, Swapan Pramanick, Dongsik Park, Jiwon Yeo, Jihyun Lee, Haeshin Lee, and Won Jong Kim. Therapeutic Gas Responsive Hydrogel. Advanced Materials (2017). DOI:

- Media Contact
For further information or to request media assistance, please contact: Mr. Shi Bo Shim, Head of Department of Communications, Institute for Basic Science (+82-42-878-8189, sibo@ibs.re.kr); Mr. Jung Gyu Kim, Global Officer, Department of Communications, Institute for Basic Science (+82-42-878-8172, jungkki1@ibs.re.kr); or Dr. Letizia Diamante, Science Writer and Visual Producer (+82-42-878-8260, letizia@ibs.re.kr).

- About the Institute for Basic Science (IBS)
IBS was founded in 2011 by the government of the Republic of Korea with the sole purpose of driving forward the development of basic science in South Korea. IBS has launched 28 research centers as of January 2017. There are nine physics, one mathematics, six chemistry, eight life science, one earth science and three interdisciplinary research centers.

  • [Arthritis Research UK] New hydrogel developed to combat rheumatoid arthritis
  • [COMPAMED] Gel to fight rheumatoid arthritis
  • [Asian Scientist] A Hydrogel That Says NO To Arthritis
  • [MedGadget] Nitric Oxide Absorbing Hydrogel Releases Drugs to Fight Rheumatoid Arthritis, Other Diseases
  • [Express] Rheumatoid arthritis symptoms CURED with 'jelly' treatment that STOPS joint pain
  • [MedicalNewsToday] Rheumatoid arthritis could be treated with a novel hydrogel
  • [Technology Networks] Novel Hydrogel: Targeted Delivery of Drugs for Rheumatoid Arthritis Patients
  • [Net India123] Gel to combat rheumatoid arthritis developed
  • [Suryaa] Gel to combat rheumatoid arthritis developed
  • [Nerve.in] Gel to combat rheumatoid arthritis developed
  • [Yahoo! India News] Gel to combat rheumatoid arthritis developed
  • [NRIPress] Gel to combat rheumatoid arthritis developed
  • [Dotemirates] Scientists develop therapeutic gel to fight rheumatoid arthritis
  • [Business Standard] Gel to fight rheumatoid arthritis developed
  • [OutlookIndia.com] Gel to fight rheumatoid arthritis developed
  • [The Asian Age] Gel to fight rheumatoid arthritis developed
  • [IndiaToday.in] Gel to fight rheumatoid arthritis developed
  • [The Economic Times - Health World] Gel to combat rheumatoid arthritis developed
  • [Deccan Chronicle] Scientists develop therapeutic gel to fight rheumatoid arthritis
  • [India.com] Gel to fight rheumatoid arthritis developed
  • [ODT] Therapeutic Hydrogel to Fight Rheumatoid Arthritis
  • [Science Daily] Gel to fight rheumatoid arthritis
  • [Science Newsline] Gel to Fight Rheumatoid Arthritis
  • [News Medical] IBS scientists invent hydrogel to combat rheumatoid arthritis
  • [PHYS.org] Scientists develop potentially therapeutic gel, which detects nitric oxide, absorbs excess fluids and delivers drugs
  • Research

    Are you satisfied with the information on this page?

    Content Manager
    Department of Communications : EunKyeong Go   042-878-8287
    Last Update 2017-11-15 02:43