주요메뉴 바로가기 본문 바로가기

주메뉴

IBS Conferences

고규영

DirectorKOH Gou Young

  • KOH Gou Young DirectorKOH Gou Young

Searching for cures for vascular diseases through deep probing research

Contact Info

Tel. +82-42-350-5638

Address

IBS Center for Vascular Research
Biomedical Research Center (E7), KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon

Director
Director KOH Gou Young

Director KOH Gou Young

Professor Koh is the director of the Center for Vascular Research, established in July, 2015. Professor Koh received his medical degree from Chonbuk National University College of Medicine. He worked as an Associate Professor at Pohang University of Technology from 2003-2010 before becoming a Distinguished Professor at KAIST in 2011. In the same year Professor Koh became a member of the BLOOD editorial board. In 2015, Doctor Koh became the director of the 25th center at IBS.

Introduction
graphic image for Research Center

Making a breakthrough in treating intractable vascular diseases such as tumors through vascular research

  • - Conducting challenging and pioneering research in vascular and cardiovascular biology
  • - Investigating the formation, integrity and pathogenic role of blood and lymphatic vessels
  • - Performing efficient myocardial regeneration research by developing technologies to generate and differentiate cardiac stem cells
Main research activities

Endothelial cells (ECs) constitute the inner lining of blood and lymphatic vessels as monolayers and play essential roles in regulating and maintaining the viability of all organs in the human body. The shape and response of ECs differ depending on the organ, location, situation, and stimuli. This diversity and heterogeneity of ECs have been a long-standing interest, because such characteristics are essential in displaying and maintaining diverse functions of different organs and tissues. Despite the significant conceptual advances we have already achieved, a large portion of the characteristics remains to be elucidated to further our understanding of the diversity and heterogeneity of ECs at the molecular level.

Our ultimate goal is to make ground-breaking discoveries, conceptual advances and paradigm shifts in vascular biology through basic and fundamental research. In particular, we will focus on further understanding of "organotypic" EC heterogeneity, angiogenesis, lymphangiogenesis, cardiogenesis, vascular remodeling, and vascular niche with the integration of biomedical science and innovative technology. We will aim to 1) identify novel key regulators and clarify their mechanisms in organotypic endothelial cell heterogeneity, angiogenesis, and vascular remodeling and regeneration, 2) identify novel key regulators and clarify their mechanisms in the interaction between endothelial cells and pericytes, 3) unveil the critical roles of key molecules in organotypic lymphangiogenesis, lymphatic remodeling, and lymphatic functions in the extra- and intra-nodal tissues, 4) identify cardioblasts and clarify their characteristics and effective applications for cardiac regeneration, and 5) undertake creative approaches and develop innovative methods for angiogenesis, lymphangiogenesis, vascular remodeling, and cardiogenesis.

To do so, we will use not only our currently established methods, technologies, reagents and experimental animals, but we will also set up several core facilities for the generation of genetically modified mice, advanced imaging technology, and gene, cell and tissue analyses. Moreover, we will combine and fuse aspects of biomedical sciences and engineering via multi-faceted and multidisciplinary approaches to implement high-quality, creative ideas and take on innovative challenges. Successful achievement of these aims will not only shed light on unexplored paths to understand the regulations of cardiovascular functions in an organ-specific manner, but also enable us to develop new drugs and stem cells to treat cardiovascular diseases, including cancer, diabetic vasculopathy and ischemic heart diseases, as translational medicine.

Organization

Organization

Main research results
  • Amelioration of Sepsis by Tie2 Activation-Induced Vascular Protection
    (Science Translational Medicine, 2016)
  • Intravital Imaging of Iintestinal Lacteals Unveils Lipid Drainage through Contractility
    (Journal of Clinical Investigation, 2015)
Personnel
Personnel status
Total32
Gender25(Male), 7(Female)
Korean/ International32(Korean), 0(International)
Degree
Position

As of Dec. 2015

Research

Are you satisfied with the information on this page?

Content Manager
Center for Vascular Research : Seo Su Jin   042-350-5638
Last Update 2017-01-12 10:12