주요메뉴 바로가기 본문 바로가기

주메뉴

IBS Conferences
Cheap, Energy-Efficient and Clean Reaction To Make Chemical Feedstock 게시판 상세보기

Cheap, Energy-Efficient and Clean Reaction To Make Chemical Feedstock

- Combining experimental and computer chemistry, scientists find the conditions to break carbon-hydrogen bonds at low temperature with cheap titanium in place of rare metals -

They are all around you! Most plastics, conductive polymers, and even medicines derive from molecules with a double bond between two carbon atoms, C=C. These molecules are called olefins and are mainly produced from fossil fuels through an energy-intensive and polluting process known as steam cracking. It requires temperatures of 800°C and produces the greenhouse gas carbon dioxide. Needless to day, alternatives to this process which could bring environmental and economic benefits are highly sought after.

A team of researchers from the Center for Catalytic Hydrocarbon Functionalizations, within the Institute for Basic Science (IBS), in collaboration with Prof. Daniel J. Mindiola from the University of Pennsylvania, accomplished a reaction that was not possible before; they produced olefins with cheap readily available ingredients and at low temperature (75°C). This research outcome, published in Nature Chemistry, paves the way for an efficient use of natural gases to synthesize important chemical products.

Natural gases, such as methane and ethane, have strong carbon-hydrogen (C-H) bonds that are difficult to break. The research team managed to transform such unreactive molecules into olefins, the chemical feedstock of a myriad of products we use in our daily life.

This type of olefin production method is based on dehydrogenation, that is the removal of hydrogens which leads to the creation of the C=C bond, the mark of olefins. Since the energy required to break the strong C-H bonds is too high, the reaction can be accomplished only with the help of other molecules, called catalysts. Previously, dehydrogenation was possible only with catalysts based on expensive metals, like iridium.

The study achieved the cheap production of olefins thanks to a synergistic teamwork between computer and experimental chemists. By simulating the entire chemical process, IBS computer chemists advised their colleagues in the University of Pennsylvania about cheap titanium-based catalyst to test.

"We moved from iridium, which is so rare and expensive it is labeled 'the element of the Gods', to an absolutely cheap metal, titanium; an element we are all familiar with as it is broadly used as white pigment for ceramics, paper, and teeth whitener," explains BAIK Mu-Hyun, the leading author from IBS. "The computer simulation predicts the movement of each electron and how molecules are going to interact, so it allowed us to shorten the development time."

To summarize, the study showed that making olefins in a cheap, energy efficient way is possible. The reaction can be performed at low temperature and the titanium catalyst can be partially recycled, so it can be used again to dehydrogenate more natural gas. The next challenge of the research team is to make the titanium-based catalyst more efficient.


▲ Figure 1: Representation of the carbon-hydrogen breaking reaction with a spindle. Olefins, that is molecules with a double bond between carbons (C=C, green box) are generated from an unreactive molecules of natural gases (violet box). The reaction includes a carefully chosen titanium (Ti)-based catalyst, represented by the wheel and an additive molecule, pictured on the spool. The additive helps the wheel to spin, to recycle the catalyst back to its original form, so it can be used again to facilitate another reaction. Olefins are the chemical feedstock for a variety of other chemicals, like plastics, conductive polymers, medicines, etc. This reaction can be performed at low temperatures and it is the first time that it can be done cheaply.


▲ Figure 2: Computer generated energy profile of the reaction. Computer simulations can predict the intermediate components of the chemical reaction and how much energy is required to obtain them.

Letizia Diamante

Notes for editors

- References
Douglas P. Solowey, Manoj V. Mane, Takashi Kurogi, Patrick J. Carroll, Brian C. Manor, Mu-Hyun Baik and Daniel J. Mindiola. A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal. Nature Chemistry, June 26, 2017. DOI: 10.1038/NCHEM.2795

- Media Contact
For further information or to request media assistance, please contact: Mr. Shi Bo Shim, Head of Department of Communications, Institute for Basic Science (+82-42-878-8189, sibo@ibs.re.kr); Ms. Carol Kim, Global Officer, Department of Communications, Institute for Basic Science (+82-42-878-8133, clitie620@ibs.re.kr); or Dr. Letizia Diamante, Science Writer and Visual Producer (+82-42-878-8260, letizia@ibs.re.kr).

- About the Institute for Basic Science (IBS)
IBS was founded in 2011 by the government of the Republic of Korea with the sole purpose of driving forward the development of basic science in South Korea. IBS has launched 28 research centers as of January 2017. There are nine physics, one mathematics, six chemistry, eight life science, one earth science and three interdisciplinary research centers.

Center for Catalytic Hydrocarbon Functionalizations

Publication Repository
백무현
Baik, Mu-Hyun 이메일 보내기 Center for Catalytic Hydrocarbon Functionalizations Publications
  • [PlasticseMarket] Scientists develop room temperature reaction to create chemical feedstock
  • [Sciencenewsline] Cheap, Energy-efficient And Clean Reaction to Make Chemical Feedstock
  • [phys.org] Cheap, energy-efficient and clean reaction to make chemical feedstock
  • [NEWSCAF] Cheap, energy-efficient and clean reaction to make chemical feedstock
  • [Environmental News Network] Cheap, Energy-Efficient and Clean Reaction To Make Chemical Feedstock
  • [eurekalert] Cheap, energy-efficient and clean reaction to make chemical feedstock
  • [ScienceDaily] Cheap, energy-efficient and clean reaction to make chemical feedstock
  • 게시판 이전 및 Next 링크
    Next
    before
    Research

    Are you satisfied with the information on this page?

    Content Manager
    Department of Communications : Han-Seob, Kim   042-878-8186
    Last Update 2017-07-21 20:49