주요메뉴 바로가기 본문 바로가기

주메뉴

IBS Conferences
Cost-effective, solvothermal synthesis of heteroatom (S or N)-doped graphene developed 게시판 상세보기
Title Cost-effective, solvothermal synthesis of heteroatom (S or N)-doped graphene developed
Embargo date 2014-07-10 18:00 Hits 3433
Press release docx 파일명 : Cost-effective_solvothermal_synthesis_of_heteroatom-doped_graphene_developed.docx Cost-effective_solvothermal_synthesis_of_heteroatom-doped_graphene_developed.docx
att. jpg 파일명 : Prof. Yung-Eun Sung.jpg Prof. Yung-Eun Sung.jpg
  • Eureka Science News

    A research team led by group leader Yung-Eun Sung has announced that they have developed cost-effective technology to synthesize sulfur-doped and nitrogen-doped graphenes which can be applied as high performance electrodes for secondary batteries and fuel cells. Yung-Eun Sung is both a group leader at the Center for Nanoparticle Research at Institute for Basic Science* (IBS) and a professor at the Seoul National University.

    * Acting IBS president, Hee-Sup Shin

     

  • This achievement has great significance with regards to the development of relative simplicity, scalablity, and cost effectiveness processes that can produce heteroatom (S or N)-doped graphenes. Moreover, these materials enhance the performance of secondary batteries and drive down the cost of producing fuel cells.

  • This process using common laboratory reagent, sodium hydroxide (NaOH) and heteroatom-containing organic solvents as precursors. The research team was able to synthesize sulfur-doped and nitrogen-doped graphenes by using a simple, single-step solvothermal method.

  • These heteroatom-doped graphene exhibited high surface areas and high contents of heteroatoms.

  • In addition, the lithium-ion batteries that had modified graphenes applied to it, exhibited a higher capacity than the theoretical capacity of graphite which was previously used in lithium-ion batteries. It presented high chemical stability which resulted in no capacity degradation in charge and discharge experiments.

  • The heteroatom-doped graphenes suggest the potential to be employed as an effective, alternative chemical material by demonstrating performance comparable to that of the expensive platinum catalyst used for the cathode of fuel cell batteries. Platinum has a high profile because of its high chemical reactivity and electrocatalytic activity. However, limited resources and high expense have been stumbling blocks in its effective commercialization.

  • The research outcomes were published online, July 10th, in Nature’s sister journal, Scientific Reports (Impact Factor of 2.927).

    * Title of Paper: Single Source Precursor-based Solvothermal Synthesis of Heteroatom-doped Graphene and Its Energy Storage and Conversion Applications
    * First Author: Bo Quan
    * Corresponding Author: Yung-Eun Sung (group leader, the Center for Nanoparticle Research at IBS), Yuanzhe Piao (professor, the Seoul National University)

  • Group leader Yung-Eun Sung of the Center for Nanoparticle Research at IBS, says, “We expect that our synthetic approach will be developed to produce doped carbon materials based on other elements (e.g., florine, boron, phosphorus) which can then increase the method’s potential applications in fuel cells, lithium secondary batteries, sensors, and semi-conductors.”

  • [sciencedaily] Cost-effective, solvothermal synthesis of heteroatom (S or N)-doped graphene developed
  • [phys.org] Cost-effective, solvothermal synthesis of heteroatom (S or N)-doped graphene developed
  • [eurekalert] Cost-effective, solvothermal synthesis of heteroatom (S or N)-doped graphene developed
  • [Eureka Science News] Cost-effective, solvothermal synthesis of heteroatom (S or N)-doped graphene developed
  • [Asian Scientist Magazine] Doping Graphene For Better Batteries
  • Research

    Are you satisfied with the information on this page?

    Content Manager
    Communications Team : Kwon Ye Seul   042-878-8237
    Last Update 2023-11-28 14:20