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1 Alternative proof

Theorem 1.1. Let G be an n-vertex comparability graph, then hpGq ď n
αpGq

. In particular, if

αpGq “ cn for some c ą 0, then hpGq ď t1c u.

Proof of Theorem 1.1. Let P be a poset and G be the comparability graph of P with αpGq “ α.
If the number of maximum independent sets at most n

α , the problem is trivial. Therefore we can
always assume the number of maximum independent sets is larger than n

α . For any pair of distinct
I1, I2 P ImaxpGq, we say that I1 supersedes I2, denoted by I1 ľ I2, if for each vertex v in I1zI2, there
exists some vertex v1 in I2zI1 such that v ą v1. If I1 neither supersedes I2 nor is superseded by I2, we
say I1 and I2 are unrelated .

Our proof consists of two parts, the first part is to establish a series of useful structural properties,
while in the second part, we provide a switch algorithm and show the existence of small hitting set.

The first structural property focus on the induced subgraph GrI1△I2s when I1 ľ I2.

Lemma 1.2. Let G be a comparability graph and let I1, I2 P ImaxpGq such that I1 ľ I2, then there
does not exist any pair of vertices pv ‰ v1q with v P I1 and v1 P I2 such that v ‰ v1 and v ă v1.
Moreover, there is a perfect matching M between I1zI2 and I2zI1, where M “ taibiu1ďiď|I1zI2| and
ai ą bi for any 1 ď i ď |I1zI2|.

Proof of Lemma 1.2. Suppose that there areis a pair pv ‰ v1q with v P I1, and v1 P I2 such that v ‰ v1

and v ă v1. Then we must have v P I1zI2 and, since I1 ľ I2, there exists another vertex v2 such that
v ą v2, which implies v1 ą v2 in I2. This contradicts that I2 is an independent set.

Let S be a subset of I1zI2, we define NI2zI1pSq :“ tu P I2zI1 : D v P I1zI2 such that uv P EpGqu.
Note that for any S Ď I1zI2, |NI2zI1pSq| ě |S|, for otherwise pI2 Y SqzNI2zI1pSq is an independent set
of size larger than α, a contradiction. Then by Hall’s theorem [?], there exists a perfect matching
M “ taibiuiPr|I1zI2|s between I1zI2 and I2zI1. By the first part, we see that ai ą bi as desired.

Next, we would like to demonstrate that the supersedence relation ľ is transitive.

Proposition 1.3. Let I1, I2, I3 P ImaxpGq, the followings hold.

(1) If I1 ľ I2 and I2 ľ I3, then I1 ľ I3.

(2) If I1 ľ I2, I3, then for any I P ImaxpGq such that I Ď I2 Y I3, we have I1 ľ I.
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Proof of Proposition 1.3. For (1), let I1, I2, I3 P ImaxpGq such that I1 ľ I2, and I2 ľ I3. We select
an arbitrary vertex v in I1zI3, if v belongs to I2zI3, then since I2 ľ I3, there is a vertex v1 in I3 such
that v ą v1, we are done. Otherwise, v does not belong to I2, then as I1 ľ I2, there is a vertex v2

in I2 such that v ą v2. Similarly since I2 ľ I3, if v
2 is in I3 then we are done, otherwise, there is a

vertex v3 P I3 such that v2 ą v3, which implies that v ą v3. Therefore, I1 ľ I3.
For (2), suppose that I1 ľ I2, I3 and I P ImaxpGq such that I Ď I2 Y I3. Then for any vertex

v P I1zI, v has at least one neighborhood v1 in I since I and I1 are both maximum independent sets.
Then by Lemma 1.2, Since I Ď I2 Y I3, and I1 supersedes both of I2 and I3, by Lemma 1.2, there is
no vertex u P I X NGpvq such that v ă u. Therefore, v ą v1 and so I1 ľ Imust hold. This finishes the
proof.

Building upon the preparatory work we have done so far, we are now poised to present a structural
result concerning comparability graphs, which is highly beneficial for the proof. Let I1, I2 P ImaxpGq,
we define the subsets I`

1 , I´
1 Ď I1 and I`

2 , I´
2 Ď I2 as follows.

I`
1 :“ tv P I1 : there exists some vertex v1 P I2 such that v ą v1u;

I´
1 :“ tv P I1 : there exists some vertex v1 P I2 such that v1 ą vu;

I`
2 :“ tu P I2 : there exists some vertex u1 P I1 such that u ą u1u;

I´
2 :“ tu P I2 : there exists some vertex u1 P I1 such that u1 ą uu.

Lemma 1.4. Let I1, I2 P ImaxpGq such that I1 and I2 are unrelated. Then I1 can be partitioned into
three parts I1 X I2, I

`
1 and I´

1 while I2 can also be partitioned into three parts I1 X I2, I
`
2 and I´

2

such that the following properties hold.

(1) There is no edge between I`
1 and I`

2 , also, there is no edge between I´
1 and I´

2 .

(2) For any edge vv1 P EpGq such that v P I`
1 and v1 P I´

2 , we have v ą v1. Similarly, for every
edge uu1 P EpGq such that u P I`

2 and u1 P I´
1 , we have u ą u1.

(3) There is a perfect matching between I`
1 and I´

2 , and a perfect matching between I´
1 and I`

2 .
Moreover, we have |I`

1 | “ |I´
2 |, |I´

1 | “ |I`
2 |.

Proof of Lemma 1.4. First, we can see I`
1 X I´

1 “ H, otherwise v P I`
1 X I´

1 yields there are vertices
v1, v2 P I2 such that v1 ă v ă v2, which contradicts I2 is an independent set. Similarly I`

2 X I´
2 “ H,

therefore I1 can be partitioned into I`
1 YI´

1 YpI1XI2q and I2 can be partitioned into I`
2 YI´

2 YpI1XI2q.
For (1), suppose there is an edge vu P EpGq with v P I`

1 and u P I`
2 . Then there is a vertex v1 P I2

such that v ą v1, and there is a vertex u1 P I1 such that u ą u1. One can easily check that exactly one
of the events v ą u ą u1 and u ą v ą v1 occurs, which implies either vu1 P EpGq or uv1 P EpGq, a
contradiction to that both of I1 and I2 are independent sets.

For (2), suppose there is an edge vv1 P EpGq such that v P I`
1 , v

1 P I´
2 and v ă v1, then by

definition of I´
2 , there exists some vertex v2 P I1 such that v1 ă v2, which also yields v ă v2, a

contradiction to that I1 is an independent set. The other statement in (2) holds for the same reason,
we omit the repeated argument.

For (3), suppose that |I`
1 | ą |I´

2 |, then based on (1), I`
1 Y I`

2 Y pI1 X I2q is also an independent
set. Moreover, |I`

1 Y I`
2 Y pI1 X I2q| ą |I2|, which is a contradiction to I2 P ImaxpGq. Therefore, we

have |I`
1 | “ |I´

2 |, |I´
1 | “ |I`

2 |. By Lemma 1.2, there is a perfect matching between I1zI2 and I2zI1.
By (1), we can further see that there is a perfect matching between I`

1 and I´
2 and a perfect matching

between I´
1 and I`

2 .
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With the above structural properties in hand, we then show there exists a hitting set of size
at most n

αpGq
. Despite this part being quite short, it might help to briefly outline the main ideas.

Our strategy roughly consists of three parts, the first is to iteratively find a sequence of maximum
independent sets I1, I2, . . . , Ik of maximal length such that for any 1 ď i ď k, Ii supersedes all Ij

with i ă j. The second step is to show, that for any other I P ImaxpGq, I should be a subset of
k
Ť

i“1
Ii,

which guarantees that all of the vertices belonging to some maximum independent set also belong to
k
Ť

i“1
Ii. Finally, we will build n

αpGq
boxes so that the vertices in any maximum independent set must

belong to those boxes, which provides the desired upper bound n
αpGq

by pigeonhole principle.
To select a sequence of maximum independent sets of maximal length such that for any 1 ď i ď k,

Ii ľ Ij for all i ă j, we apply the following switch algorithm. First, we take an arbitrary maximum
independent set I0 P ImaxpGq, then consider another arbitrary maximum independent set I, if I ľ I0
or I0 ľ I, we just put I and I0 into our selected sequence, and denote them as A1 and A2, where
A1 ľ A2. Otherwise, if I and I0 are unrelated, we partition both of them, namely I “ I´YI`YpI0XIq

and I0 “ I´
0 Y I`

0 Y pI X I0q according to Lemma 1.4. Now we can find a pair of different maximum
independent sets I 1 and I 1

0 in G, where I 1 “ pI Y I´
0 qzI` and I 1

0 “ pI0 Y I`qzI´
0 . By definitions of I´

0

and I`, we can see that I 1
0 ľ I 1. Moreover, we have I Y I0 Ď I 1

0 Y I 1, and actually here I Y I0 “ I 1
0 Y I 1.

Then we put I 1
0 and I 1 into our selected sequence and denote A1 “ I 1

0 and A2 “ I 1.
More generally, for t ě 2, assume we have already selected a sequence of maximum independent

sets A1, A2, . . . , At such that Ai ľ Aj for any 1 ď i ă j ď t. Then let A be a maximum independent
set which is different from any Ai and also is not considered during the process of selecting Ai, for
1 ď i ď t. If there exists some index 0 ď j ď t such that A ľ Aj`1 and Aj ľ A, (in particular,
j “ 0 means A ľ A1, and j “ t means At supersedes A) then we obtain a new sequence namely
A1, . . . , Ai, A,Aj`1, . . . , At. Otherwise, there exists some integer 0 ď m ď t such that A and Am

are unrelated, let m be the smallest index such that A and Am are unrelated. We then produce
the same switch operation as the previous, that is, we partition both of A “ A´ Y A` Y pAm X Aq

and Am “ A´
m Y A`

m Y pA X Amq according to Lemma 1.4 and then find a pair of new maximum
independent sets A1 and A1

m, where A1 “ pA Y A´
mqzA` and A1

m “ pAm Y A`qzA´
m.

For the original sequence of maximum independent sets A1, A2, . . . , At and A1
m and A1, we have

the following properties.

Claim 1.5. Let A1 “ pA Y A´
mqzA` and A1

m “ pAm Y A`qzA´
m be two new maximum independent

sets, then the followings hold.

(1) A1
m Y A1 “ Am Y A, and in particular, A1

m Y A1 is a subset of
t

Ť

i“1
Ai.

(2) A1
m ľ A1;

(3) For any 1 ď i ă m, Ai ľ A1 and A1
m.

(4) For any integer j ą m, A1
m ľ Aj.

Proof of claim. (1) and (2) are simple consequences from the definitions.
For (3), note that i ă m yields Ai ľ Am by the rules we select the sequence A1, . . . , At, moreover,

as m is the smallest index such that A and Am are unrelated, we also have Ai ľ A for any i ă m.
Since A1, A1

m Ď A Y Am, then by Proposition 1.3(2), Ai supersedes both of A1 and A1
m.

For (4), As A1
m “ pAm Y A`qzA´

m and there is a perfect matching between A` and A´
m, we can

easily see that A1
m ľ Am by definition. Then (4) holds by Proposition 1.3(1). ■

Then we can replace A1
m with Am, obtaining a new sequence of maximum independent sets

A1, A2, . . . , Am´1, A
1
m, Am`1, . . . , At, where Am´1 ľ A1

m and A1
m ľ Am`1. By Claim 1.5(2), we
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already know that A1
m ľ A1. Therefore, next we need to apply the same operation on A1 depending

on whether there exists some m ` 1 ď j ď t such that A1 and Aj are unrelated. To better understand
this algorithmic step, we provide a simple graphical depiction of the process, see Fig. 1.1.

We will execute the algorithm using all independent sets in the graph G. Through our analysis, we
will ultimately identify a sequence of maximum independent sets I1, I2, . . . , Ik, satisfying the condition
that Ii ľ Ij for any positive integers 1 ď i ă j ď k. Furthermore, by Claim 1.5, we can see for any

I P ImaxpGq, it either equals Is for some 1 ď s ď k, or I is a subset of the union of vertex sets
Ťk

i“1 Ii.
It is now time to construct the hitting set. Initially, we assign distinct colors to each vertex vi in

I1 :“ v1, v2, . . . , vα using color i P rαs. Leveraging Lemma 1.2, we establish that for any 1 ď s ď k´ 1,
there exists a perfect matching Ms,s`1 between IszIs`1 and Is`1zIs. Let these perfect matchings be
denoted as M1,2,M2,3, . . . ,Mk´1,k. Next, we proceed to color the vertices u P I2zI1 with color j if
uvj forms an edge in the selected perfect matching M1,2. For larger s ě 2, following analogous rules,

we subsequently color the vertices v in Is`1zp
s

Ť

i“1
Iiq using the the same color as w, if vw is an edge in

the perfect matching Ms,s`1 and w P IszIs`1.
The following observation holds importance.

Claim 1.6. The vertices receiving the same color i P rαs form a clique.

Proof of claim. As Ii ľ Ij holds for any distinct 1 ď i ă j ď k, we can see that in each perfect
matching Ms,s`1 with vertices a1, a2, . . . , ah P IszIs`1, b1, b2, . . . , bh P Is`1zIs and edges aqbq P EpGq,
we have aq ą bq holds for any 1 ď q ď h by Lemma 1.2. That means, for each class i P rαs with
the vertices cj1 , . . . , cjℓ , where j1 ă j2 ă ¨ ¨ ¨ ă jℓ, ℓ ď k and cjr P Ijr for 1 ď r ď ℓ, we have
cj1 ą cj2 ą ¨ ¨ ¨ ą cjℓ . Therefore, each color class forms a copy of clique, which finishes the proof. ■

Now, we establish that there are a total of α color classes, each forming a clique. Furthermore, for
each I P ImaxpGq, by Claim 1.5, I is a subset of

Ťk
i“1 Ii. Notice that I can intersect each color class

by at most one vertex, since I is an independent set and each color class forms a clique by Claim 1.6.
Moreover, given that |I| “ α and each vertex in I receives a color, we can see that I intersects each
color class by precisely one vertex. Consequently, the vertices in the same color class hit all maximum
independent sets. By the pigeonhole principle, the desired result hpGq ď n

α follows.
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A1 Ai´1 Ai Ai`1 At

A

compare

(a) Compare A with all selected maximum independent sets, if there exists some 1 ď i ď t such that Ai ľ A
and A ľ Ai`1, then turn to (b), otherwise turn to (c).

A1 Ai A Ai`1 At

(b) If there exists some 1 ď i ď t such that Ai ľ A and A ľ Ai`1, then we put A into the sequence and obtain
a new sequence of t ` 1 many maximum independent sets.

A1 Am´1 Am Am`1 At

A

unrelated

(c) Suppose m is the smallest index such that A and Am are unrelated, then turn to the next step (d).

A1 Am´1 A`
m A´

m Am`1 At

A´ A`

(d) By Lemma 1.4, we can partition A into A` Y A´ Y pA X Amq and partition Am into A`
m Y A´

m Y pA X Amq,
and switch to obtain two new maximum independent sets A1 and A1

m.

A1 Am´1 A1
m Am`1 At

A1

continue to compare

(e) Replace A1
m :“ pAm Y A`qzA´

m with Am to obtain a new sequence of maximum independent sets, and then
continue to check whether A1 :“ pA Y A´

mqzA` and Aj are unrelated for j ą m (turn to (a)).

Figure 1.1: A simple illustration of the switch algorithm
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