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1 Alternative proof

Theorem 1.1. Let G be an n-vertex comparability graph, then h(G) < Ok In particular, if
o(G) = cn for some ¢ > 0, then h(G) < [1].

Proof of Theorem[I.1l Let P be a poset and G be the comparability graph of P with a(G) = a.
If the number of maximum independent sets at most 7, the problem is trivial. Therefore we can
always assume the number of maximum independent sets is larger than 7. For any pair of distinct
I, I € T1hax(G), we say that Iy supersedes I, denoted by Iy > Io, if for each vertex v in I;\I, there
exists some vertex v’ in Io\I; such that v > v'. If I} neither supersedes I nor is superseded by I3, we
say I; and Is are unrelated.

Our proof consists of two parts, the first part is to establish a series of useful structural properties,
while in the second part, we provide a switch algorithm and show the existence of small hitting set.

The first structural property focus on the induced subgraph G[I;Aly] when I > Is.

Lemma 1.2. Let G be a comparability graph and let Iy, Iy € Tyax(G) such that Iy > Iy, then there
does not exist any pair of vertices (v # v') with v € I} and v' € Iy such that v # v and v < v'.
Moreover, there is a perfect matching M between I1\Iz and Io\I1, where M = {a;b;}1<i<|1,\1,) and
a; > b; for any 1 <i <|L\I2|.

Proof of Lemma[1.9 Suppose that there areis a pair (v # v') with v € I;, and v € I5 such that v # v/
and v < v'. Then we must have v € I1\I5 and, since I; > I, there exists another vertex v” such that
v > v”, which implies v' > v” in I5. This contradicts that I is an independent set.

Let S be a subset of I1\I2, we define Ny, ;, (S) := {u € I2\I1 : 3 v € I}\Iz such that uv € E(G)}.
Note that for any S < I1\I2, [Ny, (S)| = |S|, for otherwise (I2 U S)\Np, 1, (S) is an independent set
of size larger than «, a contradiction. Then by Hall’s theorem [?], there exists a perfect matching
M = {a;bi}ic(,\1,] Petween I1\Iz and I5\I1. By the first part, we see that a; > b; as desired. O

Next, we would like to demonstrate that the supersedence relation > is transitive.

Proposition 1.3. Let Iy, Is, I3 € T1yax(G), the followings hold.

(1) [f[l > Is and Iy > I3, then I} > I3.

(2) If Iy > Iy, I3, then for any I € Lyax(G) such that I < Iy U I3, we have Iy > I.
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Proof of Proposition[I.3 For (1), let I, Is, I3 € Tpax(G) such that Iy > I, and I > I3. We select
an arbitrary vertex v in I1\I3, if v belongs to I5\I3, then since I > I3, there is a vertex v’ in I3 such
that v > v/, we are done. Otherwise, v does not belong to I, then as I1 > I, there is a vertex v”
in I5 such that v > v”. Similarly since Iy > I3, if v” is in I3 then we are done, otherwise, there is a
vertex v"” € I3 such that v” > v"”, which implies that v > v”. Therefore, Iy > I3.

For (2), suppose that Iy > I, I3 and I € Z,,x(G) such that I < Iy u I3. Then for any vertex
v e I1\I, v has at least one neighborhood v’ in I since I and I; are both maximum independent sets.
Then by Lemma Since I < I U I3, and I; supersedes both of Is and I3, by Lemma there is
no vertex u € I N Ng(v) such that v < u. Therefore, v > v" and so I; > Imust hold. This finishes the
proof. O

Building upon the preparatory work we have done so far, we are now poised to present a structural
result concerning comparability graphs, which is highly beneficial for the proof. Let Iy, Is € Znax(G),
we define the subsets I;7,I; € I and I, I; < I as follows.

I} := {v € I : there exists some vertex v’ € I such that v > v'};
I7 :={v € I : there exists some vertex v’ € I such that v > v};
I := {u € I : there exists some vertex u’ € I; such that u > u'};
I; :={u € I : there exists some vertex u’ € I; such that u' > u}.

Lemma 1.4. Let I, I € Lynax(G) such that Iy and Iy are unrelated. Then Iy can be partitioned into
three parts Iy n I, Ifr and I while Iy can also be partitioned into three parts Iy N I, IQJr and Iy
such that the following properties hold.

(1) There is no edge between I and 1, also, there is no edge between I; and I .

(2) For any edge vv' € E(G) such that v € I and v' € I, we have v > v'. Similarly, for every
edge uu' € E(G) such that u € I and v’ € I , we have u > .

(3) There is a perfect matching between I} and I, , and a perfect matching between I{ and I .
Moreover, we have |I]| = |1 |, |I] | = |IS].

Proof of Lemma[I.4} First, we can see I;" n I] = (J, otherwise v € I]" N I] yields there are vertices
v’,v" € I such that v < v < v”, which contradicts I is an independent set. Similarly I n I = &,
therefore I; can be partitioned into I;" UI; U (I3 N I2) and I3 can be partitioned into I U I, U (11 N I2).

For (1), suppose there is an edge vu € E(G) with v € I} and u € I). Then there is a vertex v’ € I
such that v > v/, and there is a vertex u’ € I; such that v > u/. One can easily check that exactly one
of the events v > u > «' and u > v > v/ occurs, which implies either vu’ € E(G) or uv’ € E(G), a
contradiction to that both of I and Is are independent sets.

For (2), suppose there is an edge vv' € E(G) such that v € I;f, v/ € I; and v < ¢/, then by
definition of I, there exists some vertex v” € I such that v' < v”, which also yields v < v”, a
contradiction to that I; is an independent set. The other statement in (2) holds for the same reason,
we omit the repeated argument.

For (3), suppose that |I;f| > |1 |, then based on (1), I;* U I U (I} N I2) is also an independent
set. Moreover, |I;7 U I U (I1 n I3)| > |I2|, which is a contradiction to I € Zax(G). Therefore, we
have |I;| = |I; |, |I{ | = |I]- By Lemma there is a perfect matching between I1\Iz and Io\;.
By (1), we can further see that there is a perfect matching between ;" and I; and a perfect matching

between I, and IQJ”.
O



With the above structural properties in hand, we then show there exists a hitting set of size
at most % Despite this part being quite short, it might help to briefly outline the main ideas.
Our strategy roughly consists of three parts, the first is to iteratively find a sequence of maximum
independent sets Iy, Ia, ..., I} of maximal length such that for any 1 < i < k, I; supersedes all I;

k

with ¢ < j. The second step is to show, that for any other I € Zyy,x(G), I should be a subset of | J I,
i=1

which guarantees that all of the vertices belonging to some maximum independent set also belong to

k
‘UI I;. Finally, we will build ﬁ boxes so that the vertices in any maximum independent set must
i)elong to those boxes, which provides the desired upper bound ﬁ by pigeonhole principle.

To select a sequence of maximum independent sets of maximal length such that for any 1 < i < k,
I; > I; for all i < j, we apply the following switch algorithm. First, we take an arbitrary maximum
independent set [y € Zinax(G), then consider another arbitrary maximum independent set I, if I > Iy
or Iy > I, we just put I and Iy into our selected sequence, and denote them as A; and As, where
Aj > As. Otherwise, if I and I are unrelated, we partition both of them, namely I = I~ uIT U (Ign 1)
and Iy = Iy v I U (I N Ip) according to Lemma Now we can find a pair of different maximum
independent sets I’ and I, in G, where I’ = (I u I; )\I* and Ijy = (Ip u I*)\I, . By definitions of I
and I*, we can see that I} > I'. Moreover, we have I U Iy < I uI’, and actually here I U Iy = IJuT'.
Then we put I} and I’ into our selected sequence and denote Ay = I and Ay = I'.

More generally, for ¢ > 2, assume we have already selected a sequence of maximum independent
sets A1, Aa,..., A; such that A; > A; for any 1 < < j <t. Then let A be a maximum independent
set which is different from any A; and also is not considered during the process of selecting A;, for
1 < i < t. If there exists some index 0 < j < ¢ such that A > A;;; and A; > A, (in particular,
j = 0 means A > A, and j = t means A; supersedes A) then we obtain a new sequence namely
A, AL A A, Ay Otherwise, there exists some integer 0 < m < t such that A and A,
are unrelated, let m be the smallest index such that A and A,, are unrelated. We then produce
the same switch operation as the previous, that is, we partition both of A = A~ U AT U (4, N A)
and A, = A, U Al U (An Ap,) according to Lemma and then find a pair of new maximum
independent sets A" and A/, where A’ = (A U A;,)\A" and 4], = (A,, U AT)\A4,,.

For the original sequence of maximum independent sets Ay, As, ..., A; and A/, and A’, we have
the following properties.

Claim 1.5. Let A’ = (Au A, )\A" and A}, = (A, u AT\A;,, be two new mazimum independent
sets, then the followings hold.
t

(1) A, A" = A, UA, and in particular, A}, 0 A’ is a subset of | J A;.
i=1

(2) A, = A';
(3) Foranyl<i<m, A; > A" and A},.
(4) For any integer j > m, A}, > Aj.

Proof of claim. (1) and (2) are simple consequences from the definitions.

For (3), note that i < m yields A; > A,, by the rules we select the sequence Ay, ..., A;, moreover,
as m is the smallest index such that A and A,, are unrelated, we also have A; > A for any i < m.
Since A’, Al, € A U A,,, then by Proposition [L.3(2), A; supersedes both of A’ and A/,,.

For (4), As A, = (A, v AT)\A,, and there is a perfect matching between A" and A,,, we can
easily see that A/ > A,, by definition. Then (4) holds by Proposition ). [ |

Then we can replace A], with A,,, obtaining a new sequence of maximum independent sets
A1, Aoy A1 AL Aty -y Ay where Ay > Al and Al > Appq. By Claim (2), we



already know that A’ > A’. Therefore, next we need to apply the same operation on A’ depending
on whether there exists some m + 1 < j < t such that A’ and A; are unrelated. To better understand
this algorithmic step, we provide a simple graphical depiction of the process, see Fig. (1.1

We will execute the algorithm using all independent sets in the graph GG. Through our analysis, we
will ultimately identify a sequence of maximum independent sets Iy, Is, ..., I}, satisfying the condition
that I; > I; for any positive integers 1 < < j < k. Furthermore, by Claim we can see for any
I € T1,ax(G), it either equals I for some 1 < s < k, or I is a subset of the union of vertex sets Ule I;.

It is now time to construct the hitting set. Initially, we assign distinct colors to each vertex v; in
I :=v1,v2,..., v, using color i € [a]. Leveraging Lemmal[L.2] we establish that for any 1 < s < k—1,
there exists a perfect matching M ;11 between I \Is41 and Is41\Is. Let these perfect matchings be
denoted as My, Ma3, ..., My_1 1. Next, we proceed to color the vertices u € I)\I; with color j if
uv; forms an edge in the selected perfect matching M o. For larger s > 2, following analogous rules,

S

we subsequently color the vertices v in I541\(|J ;) using the the same color as w, if vw is an edge in

=1
the perfect matching M 441 and w € I\Ig41.

The following observation holds importance.

Claim 1.6. The vertices receiving the same color i € [a] form a clique.

Proof of claim. As I; > I; holds for any distinct 1 < ¢ < j < k, we can see that in each perfect
matching M, o1 with vertices aq,as,...,ap € I\Is41, b1, b2, ..., by € Is11\Is and edges azb, € E(G),
we have a4 > by holds for any 1 < ¢ < h by Lemma That means, for each class i € [a] with
the vertices cj,,...,cj,, where j1 < jo < --- < jg, £ < k and ¢j, € I;, for 1 < r </, we have
Cj, > Cj, > -+ > ¢;j,. Therefore, each color class forms a copy of clique, which finishes the proof. W

Now, we establish that there are a total of « color classes, each forming a clique. Furthermore, for
each I € Znax(G), by Claim I is a subset of Ule I;. Notice that I can intersect each color class
by at most one vertex, since [ is an independent set and each color class forms a clique by Claim
Moreover, given that |I| = « and each vertex in I receives a color, we can see that I intersects each
color class by precisely one vertex. Consequently, the vertices in the same color class hit all maximum
independent sets. By the pigeonhole principle, the desired result h(G) < 2 follows.

O



@

Compare

(a) Compare A with all selected maximum 1ndependent sets, if there exists some 1 < ¢ < ¢ such that 4, > A
and A > A; 1, then turn to (b), otherwise turn to (c).

(b) If there exists some 1 < ¢ < ¢ such that 4, > A and A > Az+1, then we put A into the sequence and obtain
a new sequence of ¢ + 1 many maximum independent sets.

@

unrelated

(c) Suppose m is the smallest index such that A and Am are unrela‘ced7 then turn to the next step (d).

(d) By Lemma [1.4] we can partition A into AT U A~ U (AN A,,) and partition Am into A} U A, U (AN Ay),
and switch to obtam two new maximum independent sets A’ and Al

contlnue to compare

(e) Replace Al := (A, v AT) \A with A, to obtain a new sequence of maximum independent sets, and then
continue to check Whether A= (AU A;)\A" and A; are unrelated for j > m (turn to (a)).

Figure 1.1: A simple illustration of the switch algorithm
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