# Sharp results for comparability graphs avoiding Dilworth Theorem 

Xinbu Cheng* Zixiang Xu ${ }^{\dagger}$

## 1 Alternative proof

Theorem 1.1. Let $G$ be an n-vertex comparability graph, then $h(G) \leqslant \frac{n}{\alpha(G)}$. In particular, if $\alpha(G)=c n$ for some $c>0$, then $h(G) \leqslant\left\lfloor\frac{1}{c}\right\rfloor$.

Proof of Theorem 1.1. Let $P$ be a poset and $G$ be the comparability graph of $P$ with $\alpha(G)=\alpha$. If the number of maximum independent sets at most $\frac{n}{\alpha}$, the problem is trivial. Therefore we can always assume the number of maximum independent sets is larger than $\frac{n}{\alpha}$. For any pair of distinct $I_{1}, I_{2} \in \mathcal{I}_{\max }(G)$, we say that $I_{1}$ supersedes $I_{2}$, denoted by $I_{1} \geq I_{2}$, if for each vertex $v$ in $I_{1} \backslash I_{2}$, there exists some vertex $v^{\prime}$ in $I_{2} \backslash I_{1}$ such that $v>v^{\prime}$. If $I_{1}$ neither supersedes $I_{2}$ nor is superseded by $I_{2}$, we say $I_{1}$ and $I_{2}$ are unrelated.

Our proof consists of two parts, the first part is to establish a series of useful structural properties, while in the second part, we provide a switch algorithm and show the existence of small hitting set.

The first structural property focus on the induced subgraph $G\left[I_{1} \triangle I_{2}\right]$ when $I_{1} \geq I_{2}$.
Lemma 1.2. Let $G$ be a comparability graph and let $I_{1}, I_{2} \in \mathcal{I}_{\max }(G)$ such that $I_{1} \geq I_{2}$, then there does not exist any pair of vertices $\left(v \neq v^{\prime}\right)$ with $v \in I_{1}$ and $v^{\prime} \in I_{2}$ such that $v \neq v^{\prime}$ and $v<v^{\prime}$. Moreover, there is a perfect matching $M$ between $I_{1} \backslash I_{2}$ and $I_{2} \backslash I_{1}$, where $M=\left\{a_{i} b_{i}\right\}_{1 \leqslant i \leqslant\left|I_{1} \backslash I_{2}\right|}$ and $a_{i}>b_{i}$ for any $1 \leqslant i \leqslant\left|I_{1} \backslash I_{2}\right|$.

Proof of Lemma 1.2. Suppose that there areis a pair $\left(v \neq v^{\prime}\right)$ with $v \in I_{1}$, and $v^{\prime} \in I_{2}$ such that $v \neq v^{\prime}$ and $v<v^{\prime}$. Then we must have $v \in I_{1} \backslash I_{2}$ and, since $I_{1} \geq I_{2}$, there exists another vertex $v^{\prime \prime}$ such that $v>v^{\prime \prime}$, which implies $v^{\prime}>v^{\prime \prime}$ in $I_{2}$. This contradicts that $I_{2}$ is an independent set.

Let $S$ be a subset of $I_{1} \backslash I_{2}$, we define $N_{I_{2} \backslash I_{1}}(S):=\left\{u \in I_{2} \backslash I_{1}: \exists v \in I_{1} \backslash I_{2}\right.$ such that $\left.u v \in E(G)\right\}$. Note that for any $S \subseteq I_{1} \backslash I_{2},\left|N_{I_{2} \backslash I_{1}}(S)\right| \geqslant|S|$, for otherwise $\left(I_{2} \cup S\right) \backslash N_{I_{2} \backslash I_{1}}(S)$ is an independent set of size larger than $\alpha$, a contradiction. Then by Hall's theorem [?], there exists a perfect matching $M=\left\{a_{i} b_{i}\right\}_{i \in\left[\left\lfloor I_{1} \backslash \backslash_{2} \mid\right]\right.}$ between $I_{1} \backslash I_{2}$ and $I_{2} \backslash I_{1}$. By the first part, we see that $a_{i}>b_{i}$ as desired.

Next, we would like to demonstrate that the supersedence relation $\geq$ is transitive.
Proposition 1.3. Let $I_{1}, I_{2}, I_{3} \in \mathcal{I}_{\max }(G)$, the followings hold.
(1) If $I_{1} \geq I_{2}$ and $I_{2} \geq I_{3}$, then $I_{1} \geq I_{3}$.
(2) If $I_{1} \geq I_{2}, I_{3}$, then for any $I \in \mathcal{I}_{\max }(G)$ such that $I \subseteq I_{2} \cup I_{3}$, we have $I_{1} \geq I$.

[^0]Proof of Proposition 1.3. For (1), let $I_{1}, I_{2}, I_{3} \in \mathcal{I}_{\max }(G)$ such that $I_{1} \geq I_{2}$, and $I_{2} \geq I_{3}$. We select an arbitrary vertex $v$ in $I_{1} \backslash I_{3}$, if $v$ belongs to $I_{2} \backslash I_{3}$, then since $I_{2} \geq I_{3}$, there is a vertex $v^{\prime}$ in $I_{3}$ such that $v>v^{\prime}$, we are done. Otherwise, $v$ does not belong to $I_{2}$, then as $I_{1} \geq I_{2}$, there is a vertex $v^{\prime \prime}$ in $I_{2}$ such that $v>v^{\prime \prime}$. Similarly since $I_{2} \geq I_{3}$, if $v^{\prime \prime}$ is in $I_{3}$ then we are done, otherwise, there is a vertex $v^{\prime \prime \prime} \in I_{3}$ such that $v^{\prime \prime}>v^{\prime \prime \prime}$, which implies that $v>v^{\prime \prime \prime}$. Therefore, $I_{1} \geq I_{3}$.

For (2), suppose that $I_{1} \geq I_{2}, I_{3}$ and $I \in \mathcal{I}_{\max }(G)$ such that $I \subseteq I_{2} \cup I_{3}$. Then for any vertex $v \in I_{1} \backslash I$, $v$ has at least one neighborhood $v^{\prime}$ in $I$ since $I$ and $I_{1}$ are both maximum independent sets. Then by Lemma 1.2, Since $I \subseteq I_{2} \cup I_{3}$, and $I_{1}$ supersedes both of $I_{2}$ and $I_{3}$, by Lemma 1.2, there is no vertex $u \in I \cap N_{G}(v)$ such that $v<u$. Therefore, $v>v^{\prime}$ and so $I_{1} \geq I$ must hold. This finishes the proof.

Building upon the preparatory work we have done so far, we are now poised to present a structural result concerning comparability graphs, which is highly beneficial for the proof. Let $I_{1}, I_{2} \in \mathcal{I}_{\max }(G)$, we define the subsets $I_{1}^{+}, I_{1}^{-} \subseteq I_{1}$ and $I_{2}^{+}, I_{2}^{-} \subseteq I_{2}$ as follows.

$$
\begin{aligned}
& I_{1}^{+}:=\left\{v \in I_{1}: \text { there exists some vertex } v^{\prime} \in I_{2} \text { such that } v>v^{\prime}\right\} ; \\
& I_{1}^{-}:=\left\{v \in I_{1}: \text { there exists some vertex } v^{\prime} \in I_{2} \text { such that } v^{\prime}>v\right\} ; \\
& I_{2}^{+}:=\left\{u \in I_{2}: \text { there exists some vertex } u^{\prime} \in I_{1} \text { such that } u>u^{\prime}\right\} ; \\
& I_{2}^{-}:=\left\{u \in I_{2}: \text { there exists some vertex } u^{\prime} \in I_{1} \text { such that } u^{\prime}>u\right\} .
\end{aligned}
$$

Lemma 1.4. Let $I_{1}, I_{2} \in \mathcal{I}_{\max }(G)$ such that $I_{1}$ and $I_{2}$ are unrelated. Then $I_{1}$ can be partitioned into three parts $I_{1} \cap I_{2}, I_{1}^{+}$and $I_{1}^{-}$while $I_{2}$ can also be partitioned into three parts $I_{1} \cap I_{2}, I_{2}^{+}$and $I_{2}^{-}$ such that the following properties hold.
(1) There is no edge between $I_{1}^{+}$and $I_{2}^{+}$, also, there is no edge between $I_{1}^{-}$and $I_{2}^{-}$.
(2) For any edge $v v^{\prime} \in E(G)$ such that $v \in I_{1}^{+}$and $v^{\prime} \in I_{2}^{-}$, we have $v>v^{\prime}$. Similarly, for every edge $u u^{\prime} \in E(G)$ such that $u \in I_{2}^{+}$and $u^{\prime} \in I_{1}^{-}$, we have $u>u^{\prime}$.
(3) There is a perfect matching between $I_{1}^{+}$and $I_{2}^{-}$, and a perfect matching between $I_{1}^{-}$and $I_{2}^{+}$. Moreover, we have $\left|I_{1}^{+}\right|=\left|I_{2}^{-}\right|,\left|I_{1}^{-}\right|=\left|I_{2}^{+}\right|$.

Proof of Lemma 1.4. First, we can see $I_{1}^{+} \cap I_{1}^{-}=\varnothing$, otherwise $v \in I_{1}^{+} \cap I_{1}^{-}$yields there are vertices $v^{\prime}, v^{\prime \prime} \in I_{2}$ such that $v^{\prime}<v<v^{\prime \prime}$, which contradicts $I_{2}$ is an independent set. Similarly $I_{2}^{+} \cap I_{2}^{-}=\varnothing$, therefore $I_{1}$ can be partitioned into $I_{1}^{+} \cup I_{1}^{-} \cup\left(I_{1} \cap I_{2}\right)$ and $I_{2}$ can be partitioned into $I_{2}^{+} \cup I_{2}^{-} \cup\left(I_{1} \cap I_{2}\right)$.

For (1), suppose there is an edge $v u \in E(G)$ with $v \in I_{1}^{+}$and $u \in I_{2}^{+}$. Then there is a vertex $v^{\prime} \in I_{2}$ such that $v>v^{\prime}$, and there is a vertex $u^{\prime} \in I_{1}$ such that $u>u^{\prime}$. One can easily check that exactly one of the events $v>u>u^{\prime}$ and $u>v>v^{\prime}$ occurs, which implies either $v u^{\prime} \in E(G)$ or $u v^{\prime} \in E(G)$, a contradiction to that both of $I_{1}$ and $I_{2}$ are independent sets.

For (2), suppose there is an edge $v v^{\prime} \in E(G)$ such that $v \in I_{1}^{+}, v^{\prime} \in I_{2}^{-}$and $v<v^{\prime}$, then by definition of $I_{2}^{-}$, there exists some vertex $v^{\prime \prime} \in I_{1}$ such that $v^{\prime}<v^{\prime \prime}$, which also yields $v<v^{\prime \prime}$, a contradiction to that $I_{1}$ is an independent set. The other statement in (2) holds for the same reason, we omit the repeated argument.

For (3), suppose that $\left|I_{1}^{+}\right|>\left|I_{2}^{-}\right|$, then based on (1), $I_{1}^{+} \cup I_{2}^{+} \cup\left(I_{1} \cap I_{2}\right)$ is also an independent set. Moreover, $\left|I_{1}^{+} \cup I_{2}^{+} \cup\left(I_{1} \cap I_{2}\right)\right|>\left|I_{2}\right|$, which is a contradiction to $I_{2} \in \mathcal{I}_{\max }(G)$. Therefore, we have $\left|I_{1}^{+}\right|=\left|I_{2}^{-}\right|,\left|I_{1}^{-}\right|=\left|I_{2}^{+}\right|$. By Lemma 1.2 , there is a perfect matching between $I_{1} \backslash I_{2}$ and $I_{2} \backslash I_{1}$. By (1), we can further see that there is a perfect matching between $I_{1}^{+}$and $I_{2}^{-}$and a perfect matching between $I_{1}^{-}$and $I_{2}^{+}$.

With the above structural properties in hand, we then show there exists a hitting set of size at most $\frac{n}{\alpha(G)}$. Despite this part being quite short, it might help to briefly outline the main ideas. Our strategy roughly consists of three parts, the first is to iteratively find a sequence of maximum independent sets $I_{1}, I_{2}, \ldots, I_{k}$ of maximal length such that for any $1 \leqslant i \leqslant k, I_{i}$ supersedes all $I_{j}$ with $i<j$. The second step is to show, that for any other $I \in \mathcal{I}_{\text {max }}(G), I$ should be a subset of $\bigcup_{i=1}^{k} I_{i}$, which guarantees that all of the vertices belonging to some maximum independent set also belong to $\bigcup_{i=1}^{k} I_{i}$. Finally, we will build $\frac{n}{\alpha(G)}$ boxes so that the vertices in any maximum independent set must belong to those boxes, which provides the desired upper bound $\frac{n}{\alpha(G)}$ by pigeonhole principle.

To select a sequence of maximum independent sets of maximal length such that for any $1 \leqslant i \leqslant k$, $I_{i} \geq I_{j}$ for all $i<j$, we apply the following switch algorithm. First, we take an arbitrary maximum independent set $I_{0} \in \mathcal{I}_{\max }(G)$, then consider another arbitrary maximum independent set $I$, if $I \geq I_{0}$ or $I_{0} \geq I$, we just put $I$ and $I_{0}$ into our selected sequence, and denote them as $A_{1}$ and $A_{2}$, where $A_{1} \geq A_{2}$. Otherwise, if $I$ and $I_{0}$ are unrelated, we partition both of them, namely $I=I^{-} \cup I^{+} \cup\left(I_{0} \cap I\right)$ and $I_{0}=I_{0}^{-} \cup I_{0}^{+} \cup\left(I \cap I_{0}\right)$ according to Lemma 1.4. Now we can find a pair of different maximum independent sets $I^{\prime}$ and $I_{0}^{\prime}$ in $G$, where $I^{\prime}=\left(I \cup I_{0}^{-}\right) \backslash I^{+}$and $I_{0}^{\prime}=\left(I_{0} \cup I^{+}\right) \backslash I_{0}^{-}$. By definitions of $I_{0}^{-}$ and $I^{+}$, we can see that $I_{0}^{\prime} \geq I^{\prime}$. Moreover, we have $I \cup I_{0} \subseteq I_{0}^{\prime} \cup I^{\prime}$, and actually here $I \cup I_{0}=I_{0}^{\prime} \cup I^{\prime}$. Then we put $I_{0}^{\prime}$ and $I^{\prime}$ into our selected sequence and denote $A_{1}=I_{0}^{\prime}$ and $A_{2}=I^{\prime}$.

More generally, for $t \geqslant 2$, assume we have already selected a sequence of maximum independent sets $A_{1}, A_{2}, \ldots, A_{t}$ such that $A_{i} \geq A_{j}$ for any $1 \leqslant i<j \leqslant t$. Then let $A$ be a maximum independent set which is different from any $A_{i}$ and also is not considered during the process of selecting $A_{i}$, for $1 \leqslant i \leqslant t$. If there exists some index $0 \leqslant j \leqslant t$ such that $A \geq A_{j+1}$ and $A_{j} \geq A$, (in particular, $j=0$ means $A \geq A_{1}$, and $j=t$ means $A_{t}$ supersedes A) then we obtain a new sequence namely $A_{1}, \ldots, A_{i}, A, A_{j+1}, \ldots, A_{t}$. Otherwise, there exists some integer $0 \leqslant m \leqslant t$ such that $A$ and $A_{m}$ are unrelated, let $m$ be the smallest index such that $A$ and $A_{m}$ are unrelated. We then produce the same switch operation as the previous, that is, we partition both of $A=A^{-} \cup A^{+} \cup\left(A_{m} \cap A\right)$ and $A_{m}=A_{m}^{-} \cup A_{m}^{+} \cup\left(A \cap A_{m}\right)$ according to Lemma 1.4 and then find a pair of new maximum independent sets $A^{\prime}$ and $A_{m}^{\prime}$, where $A^{\prime}=\left(A \cup A_{m}^{-}\right) \backslash A^{+}$and $A_{m}^{\prime}=\left(A_{m} \cup A^{+}\right) \backslash A_{m}^{-}$.

For the original sequence of maximum independent sets $A_{1}, A_{2}, \ldots, A_{t}$ and $A_{m}^{\prime}$ and $A^{\prime}$, we have the following properties.
Claim 1.5. Let $A^{\prime}=\left(A \cup A_{m}^{-}\right) \backslash A^{+}$and $A_{m}^{\prime}=\left(A_{m} \cup A^{+}\right) \backslash A_{m}^{-}$be two new maximum independent sets, then the followings hold.
(1) $A_{m}^{\prime} \cup A^{\prime}=A_{m} \cup A$, and in particular, $A_{m}^{\prime} \cup A^{\prime}$ is a subset of $\bigcup_{i=1}^{t} A_{i}$.
(2) $A_{m}^{\prime} \geq A^{\prime}$;
(3) For any $1 \leqslant i<m, A_{i} \geq A^{\prime}$ and $A_{m}^{\prime}$.
(4) For any integer $j>m, A_{m}^{\prime} \geq A_{j}$.

Proof of claim. (1) and (2) are simple consequences from the definitions.
For (3), note that $i<m$ yields $A_{i} \geq A_{m}$ by the rules we select the sequence $A_{1}, \ldots, A_{t}$, moreover, as $m$ is the smallest index such that $A$ and $A_{m}$ are unrelated, we also have $A_{i} \geq A$ for any $i<m$. Since $A^{\prime}, A_{m}^{\prime} \subseteq A \cup A_{m}$, then by Proposition 1.3(2), $A_{i}$ supersedes both of $A^{\prime}$ and $A_{m}^{\prime}$.

For (4), As $A_{m}^{\prime}=\left(A_{m} \cup A^{+}\right) \backslash A_{m}^{-}$and there is a perfect matching between $A^{+}$and $A_{m}^{-}$, we can easily see that $A_{m}^{\prime} \geq A_{m}$ by definition. Then (4) holds by Proposition 1.3(1).

Then we can replace $A_{m}^{\prime}$ with $A_{m}$, obtaining a new sequence of maximum independent sets $A_{1}, A_{2}, \ldots, A_{m-1}, A_{m}^{\prime}, A_{m+1}, \ldots, A_{t}$, where $A_{m-1} \geq A_{m}^{\prime}$ and $A_{m}^{\prime} \geq A_{m+1}$. By Claim 1.5(2), we
already know that $A_{m}^{\prime} \geq A^{\prime}$. Therefore, next we need to apply the same operation on $A^{\prime}$ depending on whether there exists some $m+1 \leqslant j \leqslant t$ such that $A^{\prime}$ and $A_{j}$ are unrelated. To better understand this algorithmic step, we provide a simple graphical depiction of the process, see Fig. 1.1.

We will execute the algorithm using all independent sets in the graph $G$. Through our analysis, we will ultimately identify a sequence of maximum independent sets $I_{1}, I_{2}, \ldots, I_{k}$, satisfying the condition that $I_{i} \geq I_{j}$ for any positive integers $1 \leqslant i<j \leqslant k$. Furthermore, by Claim 1.5, we can see for any $I \in \mathcal{I}_{\max }(G)$, it either equals $I_{s}$ for some $1 \leqslant s \leqslant k$, or $I$ is a subset of the union of vertex sets $\bigcup_{i=1}^{k} I_{i}$.

It is now time to construct the hitting set. Initially, we assign distinct colors to each vertex $v_{i}$ in $I_{1}:=v_{1}, v_{2}, \ldots, v_{\alpha}$ using color $i \in[\alpha]$. Leveraging Lemma 1.2, we establish that for any $1 \leqslant s \leqslant k-1$, there exists a perfect matching $M_{s, s+1}$ between $I_{s} \backslash I_{s+1}$ and $I_{s+1} \backslash I_{s}$. Let these perfect matchings be denoted as $M_{1,2}, M_{2,3}, \ldots, M_{k-1, k}$. Next, we proceed to color the vertices $u \in I_{2} \backslash I_{1}$ with color $j$ if $u v_{j}$ forms an edge in the selected perfect matching $M_{1,2}$. For larger $s \geqslant 2$, following analogous rules, we subsequently color the vertices $v$ in $I_{s+1} \backslash\left(\bigcup_{i=1}^{s} I_{i}\right)$ using the the same color as $w$, if $v w$ is an edge in the perfect matching $M_{s, s+1}$ and $w \in I_{s} \backslash I_{s+1}$.

The following observation holds importance.
Claim 1.6. The vertices receiving the same color $i \in[\alpha]$ form a clique.
Proof of claim. As $I_{i} \geq I_{j}$ holds for any distinct $1 \leqslant i<j \leqslant k$, we can see that in each perfect matching $M_{s, s+1}$ with vertices $a_{1}, a_{2}, \ldots, a_{h} \in I_{s} \backslash I_{s+1}, b_{1}, b_{2}, \ldots, b_{h} \in I_{s+1} \backslash I_{s}$ and edges $a_{q} b_{q} \in E(G)$, we have $a_{q}>b_{q}$ holds for any $1 \leqslant q \leqslant h$ by Lemma 1.2. That means, for each class $i \in[\alpha]$ with the vertices $c_{j_{1}}, \ldots, c_{j_{\ell}}$, where $j_{1}<j_{2}<\cdots<j_{\ell}, \ell \leqslant k$ and $c_{j_{r}} \in I_{j_{r}}$ for $1 \leqslant r \leqslant \ell$, we have $c_{j_{1}}>c_{j_{2}}>\cdots>c_{j_{\ell}}$. Therefore, each color class forms a copy of clique, which finishes the proof.

Now, we establish that there are a total of $\alpha$ color classes, each forming a clique. Furthermore, for each $I \in \mathcal{I}_{\max }(G)$, by Claim 1.5, $I$ is a subset of $\bigcup_{i=1}^{k} I_{i}$. Notice that $I$ can intersect each color class by at most one vertex, since $I$ is an independent set and each color class forms a clique by Claim 1.6. Moreover, given that $|I|=\alpha$ and each vertex in $I$ receives a color, we can see that $I$ intersects each color class by precisely one vertex. Consequently, the vertices in the same color class hit all maximum independent sets. By the pigeonhole principle, the desired result $h(G) \leqslant \frac{n}{\alpha}$ follows.

(a) Compare $A$ with all selected maximum independent sets, if there exists some $1 \leqslant i \leqslant t$ such that $A_{i} \geq A$ and $A \geq A_{i+1}$, then turn to (b), otherwise turn to (c).

(b) If there exists some $1 \leqslant i \leqslant t$ such that $A_{i} \geq A$ and $A \geq A_{i+1}$, then we put $A$ into the sequence and obtain a new sequence of $t+1$ many maximum independent sets.

(c) Suppose $m$ is the smallest index such that $A$ and $A_{m}$ are unrelated, then turn to the next step (d).

(d) By Lemma 1.4, we can partition $A$ into $A^{+} \cup A^{-} \cup\left(A \cap A_{m}\right)$ and partition $A_{m}$ into $A_{m}^{+} \cup A_{m}^{-} \cup\left(A \cap A_{m}\right)$, and switch to obtain two new maximum independent sets $A^{\prime}$ and $A_{m}^{\prime}$.

(e) Replace $A_{m}^{\prime}:=\left(A_{m} \cup A^{+}\right) \backslash A_{m}^{-}$with $A_{m}$ to obtain a new sequence of maximum independent sets, and then continue to check whether $A^{\prime}:=\left(A \cup A_{m}^{-}\right) \backslash A^{+}$and $A_{j}$ are unrelated for $j>m$ (turn to (a)).

Figure 1.1: A simple illustration of the switch algorithm


[^0]:    *Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, China. Emails: chengxinbu2006@sina.com.
    ${ }^{\dagger}$ Extremal Combinatorics and Probability Group (ECOPRO), Institute for Basic Science (IBS), Daejeon, South Korea. Emails: zixiangxu@ibs.re.kr. Supported by IBS-R029-C4.

