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1 Second proof via regularity lemma

Theorem 1.1. Given r ě 3, ε ą 0 and G be an n-vertex Kr-free graph. If for every non-adjacent pair
of vertices u, v P V pGq, the induced subgraph GrNpuq X Npvqs contains εnr´2 copies of Kr´2, then

G “ F r¨s for some maximal Kr-free graph F on at most 2pr` 1
ε

q2`op1q

vertices.

1.1 Overview of the proof

This proof roughly consists of three parts.

1. As the graph G has bounded VC-dimension, Theorem 1.4 yields V pGq can be equitably partitioned
into K parts V1, . . . , VK such that almost all pairs are λ-homogeneous. We further prove that,
after moving a small proportion of vertices to an exceptional set V0, we obtain a refined partition
V pGqzV0 “ U1 Y ¨ ¨ ¨ YUM with M ď K such that pUi, Ujq can be either very dense or very sparse.

2. We continue to refine the partition, more precisely, for those non-adjacent pair of vertices which
belong to dense pairs, we move both of them to the exceptional set V0. We can prove that the
number of these movements is small, that is, |V0| is small. After moving all vertices in those parts
with relatively small cardinality, we can prove that the remaining parts Z1, . . . , ZJ in V pGqzV0

with J ď M ď K are pairwise complete or anti-complete.

3. The final task is to deal with the vertices in V0, we can show that V0 can be partitioned in to at
most T ď 2J ď 2K parts H1, . . . ,HT such that Z1, . . . , ZM , H1, . . . ,HT are pairwise complete or
anti-complete, which implies that G can be viewed as a blow-up of Kr-free graph with at most
J ` T ď K ` 2K vertices. More carefully, we can improve the upper bound T ď Kpolyp1{ε,rq by
the so-called Sauer-Shelah lemma.

We will take advantage of the following results in our proof.

Proposition 1.2. Let G be a graph and V1, . . . , Vr be pairwise disjoint subsets of V pGq, each of size
m. Suppose that for every 1 ď i ă j ď r, dpVi, Vjq ě 1 ´ ε.

(i) For 1 ď i ď r, let Wi be a subset of Vi with |Wi| ě p1 ´ δqm. Then for every 1 ď i ă j ď r,
dpWi,Wjq ě 1 ´ ε

p1´δq2
.
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(ii) If
`

r
2

˘

ε ă 1, then there exist v1 P V1, . . . , vr P Vr such that v1v2 ¨ ¨ ¨ vr forms a copy of Kr.

Proof of Proposition 1.2. To prove (i), by symmetry, it suffices to show that dpW1,W2q ě 1 ´ ε
p1´δq2

.

Let M be the number of pairs px, yq such that xy R EpGq and x P V1, y P V2. It is clear that

p1 ´ dpW1,W2qqp1 ´ δq2m2 ď p1 ´ dpW1,W2qq|W1||W2| ď M “ p1 ´ dpV1, V2qq|V1||V2| ď εm2.

Rearranging gives the desired lower bound on dpW1,W2q.
To prove (ii), Let E be the set of all edges produced by the pairs pVi, Vjq, 1 ď i ă j ď r. For

1 ď i ď r, pick xi uniformly and independently at random from Vi. It is easy to see that for every
i ‰ j, Prrxixj R Es ď ε. Then by the union bound, we have

Pr
“

x1x2 ¨ ¨ ¨xr does not form a copy of Kr

‰

“ Pr
“

D i ‰ j s.t. xixj R E
‰

ď

ˆ

r

2

˙

ε ă 1,

which implies that with positive probability, one can find a copy of Kr whose r vertices are located in
distinct Vi’s.

The following result can be viewed as the fundamental result for set systems with bounded
VC-dimension, which was proven in [6, 7, 9].

Lemma 1.3. Let F be a set system with ground set V , and VC-dimension at most d, then we have

|F | ď

d
ÿ

i“0

ˆ

|V |

i

˙

.

Let 0 ă γ ă 1 be a real number, we say a pair of vertex sets pV1, V2q of G is γ-homogeneous

if the density dpV1, V2q :“ |EpV1,V2q|

|V1||V2|
is either less than γ or larger than 1 ´ γ, where in the former

case, we call pV1, V2q γ-sparse, and in the latter case, we call pV1, V2q γ-dense. A partition of V pGq is
called equitable if every two parts differ in size by at most one. We will ultize the following version
of regularity lemma. Notice that the work of  Luczak [5] and Goddard and Lyle [3] determined the
homomorphism threshold of Kr using the original regularity lemma of Szemerédi [8], which only gave
a tower-type upper bound on the size of F . Thus our result in some sense demonstrates the power of
the regularity lemma for graphs with bounded VC-dimension.

Theorem 1.4 ([2]). Let ε0 P p0, 14q and G “ pV,Eq be an n-vertex graph with VC-dimension d. Then

V pGq has an equitable partition V pGq “ V1 Y ¨ ¨ ¨ Y VK with 8
ε0

ď K ď c
`

1
ε0

˘2d`1
parts such that all

but an ε0-fraction of the pairs of parts are ε0-homogeneous, where c “ cpdq is a constant depending
only on d.

In particular, the number of parts in the above result of Fox, Pach and Suk is at most p 1
ε0

qOpdq,
which improves the previously known quantitative results by Alon, Fischer and Newman [1] and by
Lovász and Szegedy [4]. Moreover, it was shown in [2] that the partition size in the above is tight up
to an absolute constant factor in the exponent.

We have also proved that the graph G has bounded VC-dimension.

Claim 1.5. The VC-dimension of G is at most t ` r ´ 4.

1.2 Formal proof

Now we are ready to apply Theorem 1.4. Let ε0 “ mintε10, 1
10r5

u. Note that ε0 ď 1
r2

ă 1
4 as r ě 3. By

Theorem 1.4, V pGq has an equitable partition V pGq “ V1 Y V2 Y ¨ ¨ ¨ Y VK with 8
ε0

ď K ď cp 1
ε0

q2t`2r´7

such that all but an ε0-fraction of the pairs pVi, Vjq are ε0-homogeneous.
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Next we claim that there are at most
?
ε0K sets Vi such that there are more than

?
ε0K sets Vj

with pVi, Vjq not being ε0-homogeneous. Indeed, if otherwise, then the number of pairs of vertex parts
which are not ε0-homogeneous is at least p

?
ε0Kq2{2 “ ε0K

2{2 ą ε0
`

K
2

˘

, a contradiction. We then
move all vertices in those Vi to a new set V0 and renew V pGq “ V0 Y U1 Y ¨ ¨ ¨ Y UM , where M ď K
and for every 1 ď s ď M , Us “ Vs1 for some 1 ď s1 ď K. Obviously, |V0| ď

?
ε0K ¨ n

K “
?
ε0 ¨ n.

Claim 1.6. For fixed integers 1 ď i, j ď M , if dpUi, Ujq ď 1 ´ ε1, where ε1 “
4

?
ε0
ε , then there

exist distinct integers k1, k2, . . . , kr´2 P rM szti, ju such that pVa, Vbq are ε0-dense for all pa, bq P
`

ti,j,k1,...,kr´2u

2

˘

zpi, jq if i ‰ j, and for all pa, bq P
`

ti,k1,...,kr´2u

2

˘

if i=j.

Proof of claim. For convenience, set m :“ n
K . Let K´

r peq be the subgraph obtained from Kr by
removing an edge e and Zpeq be the number of copies of K´

r peq in G. To prove the claim, let us count
ř

uPUi,vPUj : uvREpGq

Zpuvq. First of all, by assumption, if i ‰ j, we have that

ÿ

uPUi,vPUj : uvREpGq

Zpuvq ě p1 ´ dpUi, Ujqq ¨ |Ui||Uj |εn
r´2 ě ε1m

2εnr´2.

Suppose that there do not exist distinct integers k1, k2, . . . , kr´2 P rM szti, ju such that pUa, Ubq are

ε0-dense for all pa, bq P
`

ti,j,k1,...,kru

2

˘

zpi, jq. Then for every pair of u P Ui, v P Uj with uv R EpGq, the
subgraph K´

r puvq belongs to at least one of the following types:

• Type 1: At least one vertex of K´
r puvq belongs to V0. Then

ÿ

uPUi,vPUj : uvREpGq

Type 1

Zpuvq ď m2 ¨ |V0| ¨ nr´3 ď
?
ε0m

2nr´2,

where the first inequality holds since there are at most m2 choices for u, v, at most |V0| ď
?
ε0n

choices for a vertex in V0, and at most nr´3 choices for the other r ´ 3 vertices.

• Type 2: At least two vertices of K´
r puvq are contained in the same part Up. Then

ÿ

uPUi,vPUj : uvREpGq

Type 2

Zpuvq ď m2 ¨ pK ´ 2q ¨

ˆ

m

2

˙

¨ nr´4 ` m2 ¨ 2pm ´ 1q ¨ nr´3 ď
5

2
m3nr´3.

We briefly explain the first inequality as follows. Since there are at most m2 choices for u and
v, if p P rM szti, ju, then there at most K ´ 2 choices for the part Up, at most

`

m
2

˘

choices for
two vertices in Up, and at most nr´4 choices for the remaining r ´ 4 vertices; otherwise p P ti, ju,
there are at most 2pm ´ 1q choices for w such that w lies in the part Ui or Uj , and at most nr´3

choices for the remaining r ´ 3 vertices.

• Type 3: At least one edge of K´
r puvq is not contained in an ε0-homogeneous pair. As there are

at most ε0
`

K
2

˘

parts that are not ε0-homogeneous, we have that

ÿ

uPUi,vPUj : uvREpGq

Type 3

Zpuvq ď m2 ¨ ε0

ˆ

K

2

˙

m2 ¨ nr´4 ` m2 ¨ 2
?
ε0Km ¨ nr´3 ď p2

?
ε0 ` ε0qm2nr´2.

The first inequality holds since there are at most m2 choices for u and v, if the non-ε0-homogeneous
pair does not involve Ui or Uj , then there are at most ε0

`

K
2

˘

m2 choices for one edge which is not
contained in an ε0-homogeneous pairs, and at most nr´4 choices for the remaining r ´ 4 vertices;
otherwise, there are at most 2

?
ε0Km vertices belonging to the parts Uq such that pUi, Uqq or

pUj , Uqq is not ε0-homogeneous.
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• Type 4: At least one edge of K´
r puvq is contained in some ε0-sparse pair. Then

ÿ

uPUi,vPUj : uvREpGq

Type 4

Zpuvq ď m2 ¨

ˆ

K

2

˙

ε0m
2 ¨ nr´4 ` 2ε0m

2 ¨ n ¨ nr´3 ď 3ε0m
2nr´2.

We briefly explain the first inequality as follows. If there is at least one edge of K´
r puvq is

contained in some ε0-sparse pair and the ε0-sparse pair does not intersect Ui or Uj , then totally
there are at most m2 choices for u and v, at most

`

K
2

˘

ε0m
2 choices for one edge contained which

is in an ε0-sparse pair, and at most nr´4 choices for the remaining r ´ 4 vertices. Otherwise,
totally there are at most 2ε0m

2 ¨ n triples pui, uj , ukq P Ui ˆ Uj ˆ Uk such that uiukuj forms an
induced path and pUi, Ujq is ε1-sparse and at least one of pUi, Ukq and pUj , Ukq is ε0-sparse, this
is because there are at most ε0m

2 edges between ε0-sparse pairs. Finally, the number of choices
for the remaining r ´ 3 vertices is at most nr´3.

As ε1 “
4

?
ε0
ε , we have

ÿ

uPUi,vPUj : uvREpGq

Zpuvq ě ε1εm
2nr´2 ą p3

?
ε0 ` 4ε0qm2nr´2 `

5m3nr´3

2
ě

ÿ

uPUi,vPUj : uvREpGq

Zpuvq,

which leads to a contradiction. Note that the above argument also holds if i “ j by hypothesis
dpUiq ă 1 ´ ε1. Indeed, because G is Kr-free, by Turán’s theorem the number of edges in GrUis is at
most p1 ´ 1

r´1q
`

m
2

˘

ă p1 ´ ε1qm2. The proof is finished. ■

By Proposition 1.2 and Claim 1.6, we can refine the original partition by Theorem 1.4 in the
following lemma.

Lemma 1.7. For every integer r ě 3, every real number ε ą 0 and t “ t1ε u ` 1, there exists some
ε0 “ mintε10, 1

10r5
u such that the following holds. Let G be an n-vertex ε-ultra maximal Kr-free graph,

then there exists a subset V0 with |V0| ď
?
ε0n such that V pGqzV0 can be equitably partitioned into at

most M ď cpt, rqp 1
ε0

q2pt`r´4q parts U1 Y ¨ ¨ ¨ Y UM such that for any distinct 1 ď i ă j ď M , either

dpUi, Ujq ă ε2 or dpUi, Ujq ą 1 ´ ε1, where ε1 “
4

?
ε0
ε and ε2 “ 16rε0.

Proof of Lemma 1.7. Based on Claim 1.5 and Claim 1.6, it suffices to show that for any distinct
1 ď i ă j ď M . If dpUi, Ujq ď 1 ´ ε1, then dpUi, Ujq ă ε2.

Recall |Ui| “ m “ n
K , we also set C “ 1

8ε0
, and ε2 “ 16rε0. Suppose for the sake of contradiction

that there exist two parts, namely Ur´1 and Ur, such that ε2 ď dpUr´1, Urq ď 1 ´ ε1. Then one can
find r ´ 2 subsets, say U1, . . . , Ur´2, that satisfy the conclusion of Claim 1.6. We will show that if
dpUr´1, Urq ě ε2, then there must exist a copy of Kr whose r vertices are located in distinct parts
U1, . . . , Ur.

Pick x P Ur´1 and y P Ur uniformly and independently at random. Since by assumption
dpUr´1, Urq ě ε2, we have Prrxy P EpGqs ě ε2. To obtain the desired Kr using Proposition 1.2,
we will show that with probability larger than 1 ´ ε2, |Npxq X Npyq X Uk| are very large for all
k P rr ´ 2s. To do so, note first that for every k P rr ´ 2s, E

“

|Npxq X Uk|
‰

ě p1 ´ ε0qm, which implies
that E

“

|UkzpNpxq X Ukq|
‰

ď ε0m. Therefore, by Markov’s inequality we have

Pr

„

|Npxq X Uk| ď p1 ´ Cε0qm

ȷ

“ Pr

„

|UkzpNpxq X Ukq| ě Cε0m

ȷ

ď
1

C
.

By the union bound, it is clear that

Pr

„

D k P rr ´ 2s s.t. |Npxq X Uk| ď p1 ´ Cε0qm

ȷ

ď
r ´ 2

C
.
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Similarly, one can show that

Pr

„

D k P rr ´ 2s s.t. |Npyq X Uk| ď p1 ´ Cε0qm

ȷ

ď
r ´ 2

C
.

Combining the above two inequalities and the union bound, it is not hard to see that

Pr

„

@ k P rr ´ 2s, min
␣

|Npxq X Uk|, |Npyq X Uk|
(

ě p1 ´ Cε0qm

ȷ

ě 1 ´
2r ´ 4

C
ą 1 ´ ε2.

Recall that Prrxy P EpGqs ě ε2. It follows that there exist x P Ur´1 and y P Ur such that xy P EpGq

and for every i P rr ´ 2s, we have min
␣

|Npxq X Uk|, |Npyq X Uk|
(

ě p1 ´ Cε0qm. Therefore, for each
k P rr ´ 2s, we have |Npxq XNpyq XUk| ě p1 ´ 2Cε0qm. Let Wk :“ Npxq XNpyq XUk. Then it follows
by Proposition 1.2 (i) that for every 1 ď k ă ℓ ď r ´ 2,

dpWk,Wℓq ě 1 ´
ε0

p1 ´ 2Cε0q2
“ 1 ´

16ε0
9

.

As
`

r´2
2

˘

¨ 16ε0
9 ď 8

9r
2ε0 ă 1, it follows by Proposition 1.2 (ii) that there exists a copy of Kr´2 whose

r ´ 2 vertices are located in distinct Wk’s. Together with x, y, we obtain a copy of Kr whose r vertices
are located in distinct parts U1, . . . , Ur, a contradiction. This completes the proof.

It follows by Lemma 1.7 that for every 1 ď i ă j ď M , pUi, Ujq is either ε1-dense or ε2-sparse. Next,
we will make all of the ε1-dense pairs pUi, Ujq become complete bipartite graphs by simultaneously
destroying all of the missing edges between these two parts.

Let P be the set formed by all of the missing edges between the ε1-dense pairs of parts, that is,

P :“ txy R EpGq : D 1 ď i ă j ď M s.t. x P Ui, y P Uj and pUi, Ujq is ε1-denseu.

Let S “ tx1y1, . . . , xsysu be a maximal matching formed by the missing edges in P . In other words, for
each 1 ď ℓ ď s, we have xℓyℓ R EpGq and there exist 1 ď ℓa ă ℓb ď M such that xℓ P Uℓa , yℓ P Uℓb and
pUℓa , Uℓbq is ε1-dense; moreover, for every xy R EpGq which is a missing edge between some ε1-dense
pair of parts, we must have tx, yu X txℓ, yℓ : 1 ď ℓ ď su ‰ H.

To better understand the properties of the maximal matching S, we also need the following new
notations. We call an edge xy P EpGq sparse if there exist 1 ď i ă j ď M such that x P Ui, y P Uj and
pUi, Ujq is ε2-sparse. For an integer t, we call a copy of Kt with t vertices locating in t distinct Ui’s
sparse if it contains at least one sparse edge, otherwise we call it dense. For each integer 3 ď t ď r ´ 1,
it is not hard to check that the total number of sparse edges and sparse Kt’s in G is at most ε2n

2 and
ε2n

2 ¨ nt´2 “ ε2n
t, respectively.

Claim 1.8. For every 1 ď ℓ ď s and xℓyℓ P S, Grtxℓ, yℓu X Npxℓ, yℓqs contains at least 1
3εn

r´2 sparse
Kr´1’s whose vertex set has non-empty intersection with txℓ, yℓu.

Proof. Recall that by assumption we have xℓyℓ R EpGq and there exist 1 ď ℓa ă ℓb ď M such that
xℓ P Uℓa , yℓ P Uℓb and pUℓa , Uℓbq is ε1-dense. Moreover, the induced subgraph GrNpxℓ, yℓqs contains at
least εnr´2 copies of Kr´2’s. Note that the number of Kr´2’s with at least two vertices belonging to
the same Ui is at most Km2nr´4 ď nr´2

K , and the number of Kr´2’s with non-empty intersection with

Uℓa Y Uℓb is at most 2mnr´3 ď 2nr´2

K . Therefore, by our choice of ε0 and K, GrNpxℓ, yℓqs contains at
least

εnr´2 ´
3nr´2

K
ě

2

3
εnr´2

copies Kr´2’s whose r ´ 2 vertices are located in r ´ 2 distinct Ui’s, where 1 ď i ď M and i R tℓa, ℓbu.
It follows that GrNpxℓ, yℓqs contains either at least 1

3εn
r´2 dense Kr´2’s or at least 1

3εn
r´2 sparse

Kr´2’s, which are disjoint from Uℓa Y Uℓb . We then consider the following two cases, depending on the
number of dense and sparse Kr´2’s in GrNpxℓ, yℓqs.
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Case 1. Suppose that GrNpxℓ, yℓqs contains at least 1
3εn

r´2 dense Kr´2’s, which are disjoint from
Uℓa YUℓb . Then note first that as

`

r
2

˘

ε1 ă 1, it follows by Proposition 1.2 that G contains no
dense Kr. Consider an arbitrary dense Kr´2 in GrNpxℓ, yℓqs, say with vertices v1, . . . , vr´2,
which are disjoint from Uℓa Y Uℓb . Then there are distinct integers 1 ď k1, . . . , kr´2 ď M ,
tk1, . . . , kr´2u X tℓa, ℓbu “ H such that for every 1 ď t ď r ´ 2, vt P Ukt , and all pairs of
Uk1 , . . . , Ukr´2 are ε1-dense. Since G contains no dense Kr and pUℓa , Uℓbq is ε1-dense, at
least one of the 2r ´ 4 pairs tpUℓa , Uktq, pUℓb , Uktq : 1 ď t ď r ´ 2u is ε2-sparse, which
implies that at least one of the 2r ´ 4 edges txℓvi, yℓvi : 1 ď t ď r ´ 2u is sparse. Thus,
each such dense Kr´2 produces one copy of sparse Kr´1 whose vertex set has non-empty
intersection with txℓ, yℓu.

Case 2. Suppose GrNpxℓ, yℓqs contains at least 1
3εn

r´2 sparse Kr´2’s, which are disjoint from
Uℓa Y Uℓb . Then together with xℓ and yℓ, each such sparse Kr´2 produces two sparse
Kr´1’s in G. Therefore, Grtxℓ, yℓu Y Npxℓ, yℓqs contains at least 1

3εn
r´2 sparse Kr´1’s

whose vertex set has non-empty intersection with txℓ, yℓu.

Then the proof is finished.

By Claim 1.8, we can obtain the following upper bound on s.

Corollary 1.9. s ď
6pr´1qε2n

ε .

Proof of claim. Note that txℓ, yℓu X txℓ1 , yℓ1u “ H for ℓ ‰ ℓ1, and each sparse Kr´1 can lie in at
most r ´ 1 distinct induced subgraphs Grtxℓ, yℓu Y Npxℓ, yℓqs. Therefore, by Claim 1.8, G contains
1

r´1 ¨ s
2 ¨ 1

3εn
r´2 distinct sparse Kr´1’s. Moreover, we already know that the total number sparse Kr´1’s

in G is at most ε2n
2 ¨ nr´3 “ ε2n

r´1, which implies that s ď
6pr´1qε2n

ε .
■

Now we move all of these 2s vertices in S to V0, and we know that |V0| ď
`12pr´1qε2

ε `
?
ε0
˘

n. We
also denote Zi :“ Uiztxℓ, yℓ : 1 ď ℓ ď su, 1 ď i ď M . By the maximality of S, if pUi, Ujq is ε1-dense
then pZi, Zjq is either complete, or at least one of Zi, Zj is anti-complete.

To sum up, we have shown that by moving at most 12pr´1qε2n
ε vertices from

ŤM
i“1 Ui to V0, we

can make all of the ε1-dense pairs pUi, Ujq become complete. Then we can see V0, Z1, . . . , ZM form

a new partition of V pGq with |V0| ď
`12pr´1qε2

ε `
?
ε0
˘

n. Let ε3 “ ε3. We will slightly refine
the above partition by removing all vertices in the Zi’s with |Zi| ă p1 ´ ε3qm, and decreasing the
size of all the remaining Zj ’s to p1 ´ ε3qm by removing some arbitrary |Zj | ´ p1 ´ ε3qm ď ε3m
vertices. We will put all of the abandoned vertices to V0. For convenience, we still denote this
exceptional set by V0. Clearly, in the first step of the refinement above, we have removed at most
p1 ´ ε3qm ¨

12pr´1qε2n{ε
ε3m

ď
12pr´1qε2n

ε3ε
vertices, and in the second step, we have removed at most ε3n

vertices. Finally, we obtain a new partition of V pGq “ V0 Y Z1 Y Z2 Y ¨ ¨ ¨ Y ZJ , where J ď M ď K,

|Zi| “ p1 ´ ε3qm and |V0| ď
12pr´1qε2n

ε3ε
` ε3n `

`12pr´1qε2
ε `

?
ε0
˘

n ď 2ε3n. Moreover, For each
1 ď i ă j ď J , the pair pZi, Zjq is either complete, or ε2

p1´ε3q2
-sparse.

For each i P rJs, since each GrZis is Kr-free, by Turán’s theorem we know that for each Zi,

epGrZisq ď r´2
r´1

`

|Zi|

2

˘

, which implies that there are at least 1
r´1

`

p1´ε3qm
2

˘

ě m2

16pr´1q
ě ε1m

2 many missing

edges in GrZis. Then Claim 1.6 states that for any Zi, there exist distinct integers k1, k2, . . . , kr´2 P

rJsztiu such that pZa, Zbq are ε1-dense for all pa, bq P
`

ti,k1,...,kr´2u

2

˘

. Moreover, since we have proved
the ε1-dense pairs indeed form complete bipartite graphs and G is Kr-free, the following result holds.

Claim 1.10. For any 1 ď i ď J , Zi is an independent set.
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Similarly, suppose that pZi, Zjq is ε2
p1´ε3q2

-sparse, then via a simple modification of the proof

of Claim 1.6, we can show there exist distinct integers k1, k2, . . . , kr´2 P rJszti, ju such that pZa, Zbq

form complete bipartite graphs for all pa, bq P
`

ti,j,k1,...,kr´2u

2

˘

zpi, jq. Also by the by the assumption that
G is Kr-free, we have the following consequence.

Claim 1.11. For any Zi, Zj with 1 ď i ă j ď J , if pZi, Zjq is not complete, then pZi, Zjq is anti-
complete.

Through the above analysis, now we know that GrV zV0s “ GrZ1 Y ¨ ¨ ¨ Y ZJ s can be viewed as a
p1 ´ ε3qm-blow-up of some Kr-free graph. Next, we consider the vertices in V0.

Claim 1.12. For any vertex v P V0 and any Zi, either NZipvq “ H or NZipvq “ Zi.

Proof of claim. Suppose that there exist two vertices u1, u2 P Zi such that vu1 P EpGq and vu2 R EpGq,

then by assumption, GrNpv, u2qs contains εnr´2 ´ |V0|nr´3 ě εnr´2

2 many Kr´2 such that all of the
r ´ 2 vertices are in Z1 Y ¨ ¨ ¨ Y ZJ . By Claim 1.10, these r ´ 2 vertices, say ui1 , . . . , uir´2 R Zi should
lie in distinct parts Zi1 , . . . , Zir´2 , where ix ‰ i for any x P rr ´ 2s. Moreover, we know that if there is
an edge between any pair pZi, Zjq, then this pair pZi, Zjq forms a complete bipartite graph, therefore,
vu1ui1 ¨ ¨ ¨uir´2 forms a copy of Kr, a contradiction. ■

Then we partition the vertex set V0 by the following rule. For any subset A Ď rJs, we put the
vertex v P V0 into HA if and only if NpvqzV0 “

Ť

aPA

Za. therefore, we partition V0 into at most 2J parts,

denoted as V0 “ H1 Y H2 Y ¨ ¨ ¨ Y HT , where T ď 2J ď 2K .

Claim 1.13. For any pair pHi, Hjq, Hi, Hj is either complete or anti-complete.

Proof of claim. For any pair Hi, Hj , suppose that there are two pairs of vertices v1u1 P EpGq and

v2u2 R EpGq, then by assumption that GrNpv2, u2qs contains εnr´2 ´ |V0|nr´3 ě εnr´2

2 many Kr´2’s
such that all of the r ´ 2 vertices are in Z1 Y ¨ ¨ ¨ Y ZJ . By Claim 1.10, these r ´ 2 vertices, namely,
ui1 , . . . , uir´2 should lie in distinct parts Zi1 , . . . , Zir´2 . By Claim 1.12, we know all of the pairs pHa, Zbq

form complete bipartite graphs for all a P ti, ju and b P ti1, . . . , ir´2u. Therefore, v1u1ui1 ¨ ¨ ¨uir´2

forms a copy of Kr, a contradiction. ■

Trivially the above argument gives that L ď 2K ` K ď 2
cp 1

ε0
q2t`2r´7

, as ε0 “ mintε10, 1
10r5

u,
t “ t1ε u ` 1 and c only depends on ε and r. More carefully, we can further improve the estimation. By
the role of partition of V0, we consider the set system

F :“ tF Ď rJs : there is some vertex v P V0 such that NpvqzV0 “
ď

jPF

Zju.

Suppose that |F | ą
t`r´4
ř

i“0

`

|J |

i

˘

, then Lemma 1.3 tells that there is a subset A Ď rJs with |A| “ t` r ´ 3

such that A is shattered by F . We can pick one vertex from each Zi with i P A respectively, say
a1, a2, . . . , at`r´3. By definition of F , for any subset B Ď ta1, a2, . . . , at`r´3u, we can find some vertex
vB in V0 such that NpvBq X ta1, a2, . . . , at`r´3u “ B, which implies that the VC-dimension of G is at

least t ` r ´ 3, a contradiction to Claim 1.5. Therefore, |F | ď
t`r´4
ř

i“0

`

|J |

i

˘

, which means T ď
t`r´4
ř

i“0

`

|J |

i

˘

.

Therefore, L ď J `
t`r´4
ř

i“0

`

|J |

i

˘

“ 2c
`

1
ε

`r
˘2

logmax
␣

1
ε10

,10r5
(

for some absolute constant c ą 0. This

finishes the proof.
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