An alternative proof via regularity lemma

Hong Liu* Chong Shangguan ${ }^{\dagger} \quad$ Jozef Skokan ${ }^{\ddagger} \quad$ Zixiang Xu*

March 26, 2024

1 Second proof via regularity lemma

Theorem 1.1. Given $r \geqslant 3, \varepsilon>0$ and G be an n-vertex K_{r}-free graph. If for every non-adjacent pair of vertices $u, v \in V(G)$, the induced subgraph $G[N(u) \cap N(v)]$ contains εn^{r-2} copies of K_{r-2}, then $G=F[\cdot]$ for some maximal K_{r}-free graph F on at most $2^{\left(r+\frac{1}{\varepsilon}\right)^{2+o(1)}}$ vertices.

1.1 Overview of the proof

This proof roughly consists of three parts.

1. As the graph G has bounded VC-dimension, Theorem 1.4 yields $V(G)$ can be equitably partitioned into K parts V_{1}, \ldots, V_{K} such that almost all pairs are λ-homogeneous. We further prove that, after moving a small proportion of vertices to an exceptional set V_{0}, we obtain a refined partition $V(G) \backslash V_{0}=U_{1} \cup \cdots \cup U_{M}$ with $M \leqslant K$ such that $\left(U_{i}, U_{j}\right)$ can be either very dense or very sparse.
2. We continue to refine the partition, more precisely, for those non-adjacent pair of vertices which belong to dense pairs, we move both of them to the exceptional set V_{0}. We can prove that the number of these movements is small, that is, $\left|V_{0}\right|$ is small. After moving all vertices in those parts with relatively small cardinality, we can prove that the remaining parts Z_{1}, \ldots, Z_{J} in $V(G) \backslash V_{0}$ with $J \leqslant M \leqslant K$ are pairwise complete or anti-complete.
3. The final task is to deal with the vertices in V_{0}, we can show that V_{0} can be partitioned in to at most $T \leqslant 2^{J} \leqslant 2^{K}$ parts H_{1}, \ldots, H_{T} such that $Z_{1}, \ldots, Z_{M}, H_{1}, \ldots, H_{T}$ are pairwise complete or anti-complete, which implies that G can be viewed as a blow-up of K_{r}-free graph with at most $J+T \leqslant K+2^{K}$ vertices. More carefully, we can improve the upper bound $T \leqslant K^{\text {poly }(1 / \varepsilon, r)}$ by the so-called Sauer-Shelah lemma.

We will take advantage of the following results in our proof.
Proposition 1.2. Let G be a graph and V_{1}, \ldots, V_{r} be pairwise disjoint subsets of $V(G)$, each of size m. Suppose that for every $1 \leqslant i<j \leqslant r, d\left(V_{i}, V_{j}\right) \geqslant 1-\varepsilon$.
(i) For $1 \leqslant i \leqslant r$, let W_{i} be a subset of V_{i} with $\left|W_{i}\right| \geqslant(1-\delta) m$. Then for every $1 \leqslant i<j \leqslant r$, $d\left(W_{i}, W_{j}\right) \geqslant 1-\frac{\varepsilon}{(1-\delta)^{2}}$.

[^0](ii) If $\binom{r}{2} \varepsilon<1$, then there exist $v_{1} \in V_{1}, \ldots, v_{r} \in V_{r}$ such that $v_{1} v_{2} \cdots v_{r}$ forms a copy of K_{r}.

Proof of Proposition 1.2. To prove (i), by symmetry, it suffices to show that $d\left(W_{1}, W_{2}\right) \geqslant 1-\frac{\varepsilon}{(1-\delta)^{2}}$. Let M be the number of pairs (x, y) such that $x y \notin E(G)$ and $x \in V_{1}, y \in V_{2}$. It is clear that

$$
\left(1-d\left(W_{1}, W_{2}\right)\right)(1-\delta)^{2} m^{2} \leqslant\left(1-d\left(W_{1}, W_{2}\right)\right)\left|W_{1}\right|\left|W_{2}\right| \leqslant M=\left(1-d\left(V_{1}, V_{2}\right)\right)\left|V_{1}\right|\left|V_{2}\right| \leqslant \varepsilon m^{2}
$$

Rearranging gives the desired lower bound on $d\left(W_{1}, W_{2}\right)$.
To prove (ii), Let E be the set of all edges produced by the pairs $\left(V_{i}, V_{j}\right), 1 \leqslant i<j \leqslant r$. For $1 \leqslant i \leqslant r$, pick x_{i} uniformly and independently at random from V_{i}. It is easy to see that for every $i \neq j, \operatorname{Pr}\left[x_{i} x_{j} \notin E\right] \leqslant \varepsilon$. Then by the union bound, we have

$$
\operatorname{Pr}\left[x_{1} x_{2} \cdots x_{r} \text { does not form a copy of } K_{r}\right]=\operatorname{Pr}\left[\exists i \neq j \text { s.t. } x_{i} x_{j} \notin E\right] \leqslant\binom{ r}{2} \varepsilon<1
$$

which implies that with positive probability, one can find a copy of K_{r} whose r vertices are located in distinct V_{i} 's.

The following result can be viewed as the fundamental result for set systems with bounded VC-dimension, which was proven in [6, 7, 9].

Lemma 1.3. Let \mathcal{F} be a set system with ground set V, and $V C$-dimension at most d, then we have

$$
|\mathcal{F}| \leqslant \sum_{i=0}^{d}\binom{|V|}{i}
$$

Let $0<\gamma<1$ be a real number, we say a pair of vertex sets $\left(V_{1}, V_{2}\right)$ of G is γ-homogeneous if the density $d\left(V_{1}, V_{2}\right):=\frac{\left|E\left(V_{1}, V_{2}\right)\right|}{\left|V_{1}\right|\left|V_{2}\right|}$ is either less than γ or larger than $1-\gamma$, where in the former case, we call $\left(V_{1}, V_{2}\right) \gamma$-sparse, and in the latter case, we call $\left(V_{1}, V_{2}\right) \gamma$-dense. A partition of $V(G)$ is called equitable if every two parts differ in size by at most one. We will ultize the following version of regularity lemma. Notice that the work of Łuczak [5] and Goddard and Lyle [3] determined the homomorphism threshold of K_{r} using the original regularity lemma of Szemerédi [8], which only gave a tower-type upper bound on the size of F. Thus our result in some sense demonstrates the power of the regularity lemma for graphs with bounded VC-dimension.

Theorem $1.4([2])$. Let $\varepsilon_{0} \in\left(0, \frac{1}{4}\right)$ and $G=(V, E)$ be an n-vertex graph with $V C$-dimension d. Then $V(G)$ has an equitable partition $V(G)=V_{1} \cup \cdots \cup V_{K}$ with $\frac{8}{\varepsilon_{0}} \leqslant K \leqslant c\left(\frac{1}{\varepsilon_{0}}\right)^{2 d+1}$ parts such that all but an ε_{0}-fraction of the pairs of parts are ε_{0}-homogeneous, where $c=c(d)$ is a constant depending only on d.

In particular, the number of parts in the above result of Fox, Pach and Suk is at most $\left(\frac{1}{\varepsilon_{0}}\right)^{O(d)}$, which improves the previously known quantitative results by Alon, Fischer and Newman [1] and by Lovász and Szegedy [4]. Moreover, it was shown in [2] that the partition size in the above is tight up to an absolute constant factor in the exponent.

We have also proved that the graph G has bounded VC-dimension.
Claim 1.5. The $V C$-dimension of G is at most $t+r-4$.

1.2 Formal proof

Now we are ready to apply Theorem 1.4. Let $\varepsilon_{0}=\min \left\{\varepsilon^{10}, \frac{1}{10 r^{5}}\right\}$. Note that $\varepsilon_{0} \leqslant \frac{1}{r^{2}}<\frac{1}{4}$ as $r \geqslant 3$. By Theorem 1.4, $V(G)$ has an equitable partition $V(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{K}$ with $\frac{8}{\varepsilon_{0}} \leqslant K \leqslant c\left(\frac{1}{\varepsilon_{0}}\right)^{2 t+2 r-7}$ such that all but an ε_{0}-fraction of the pairs $\left(V_{i}, V_{j}\right)$ are ε_{0}-homogeneous.

Next we claim that there are at most $\sqrt{\varepsilon_{0}} K$ sets V_{i} such that there are more than $\sqrt{\varepsilon_{0}} K$ sets V_{j} with $\left(V_{i}, V_{j}\right)$ not being ε_{0}-homogeneous. Indeed, if otherwise, then the number of pairs of vertex parts which are not ε_{0}-homogeneous is at least $\left(\sqrt{\varepsilon_{0}} K\right)^{2} / 2=\varepsilon_{0} K^{2} / 2>\varepsilon_{0}\binom{K}{2}$, a contradiction. We then move all vertices in those V_{i} to a new set V_{0} and renew $V(G)=V_{0} \cup U_{1} \cup \cdots \cup U_{M}$, where $M \leqslant K$ and for every $1 \leqslant s \leqslant M, U_{s}=V_{s^{\prime}}$ for some $1 \leqslant s^{\prime} \leqslant K$. Obviously, $\left|V_{0}\right| \leqslant \sqrt{\varepsilon_{0}} K \cdot \frac{n}{K}=\sqrt{\varepsilon_{0}} \cdot n$.

Claim 1.6. For fixed integers $1 \leqslant i, j \leqslant M$, if $d\left(U_{i}, U_{j}\right) \leqslant 1-\varepsilon_{1}$, where $\varepsilon_{1}=\frac{4 \sqrt{\varepsilon_{0}}}{\varepsilon}$, then there exist distinct integers $k_{1}, k_{2}, \ldots, k_{r-2} \in[M] \backslash\{i, j\}$ such that $\left(V_{a}, V_{b}\right)$ are ε_{0}-dense for all $(a, b) \in$ $\left(\underset{2}{\left\{i, j, k_{1}, \ldots, k_{r-2}\right\}}\right) \backslash(i, j)$ if $i \neq j$, and for all $(a, b) \in\left(\frac{\left\{i, k_{1}, \ldots, k_{r-2}\right\}}{2}\right)$ if $i=j$.
Proof of claim. For convenience, set $m:=\frac{n}{K}$. Let $K_{r}^{-}(e)$ be the subgraph obtained from K_{r} by removing an edge e and $Z(e)$ be the number of copies of $K_{r}^{-}(e)$ in G. To prove the claim, let us count $\sum_{u \in U_{i}, v \in U_{j}: u v \notin E(G)} Z(u v)$. First of all, by assumption, if $i \neq j$, we have that

$$
\sum_{u \in U_{i}, v \in U_{j}: u v \notin E(G)} Z(u v) \geqslant\left(1-d\left(U_{i}, U_{j}\right)\right) \cdot\left|U_{i}\right|\left|U_{j}\right| \varepsilon n^{r-2} \geqslant \varepsilon_{1} m^{2} \varepsilon n^{r-2} .
$$

Suppose that there do not exist distinct integers $k_{1}, k_{2}, \ldots, k_{r-2} \in[M] \backslash\{i, j\}$ such that $\left(U_{a}, U_{b}\right)$ are ε_{0}-dense for all $(a, b) \in\binom{\left\{i, j, k_{1}, \ldots, k_{r}\right\}}{2} \backslash(i, j)$. Then for every pair of $u \in U_{i}, v \in U_{j}$ with $u v \notin E(G)$, the subgraph $K_{r}^{-}(u v)$ belongs to at least one of the following types:

- Type 1: At least one vertex of $K_{r}^{-}(u v)$ belongs to V_{0}. Then

$$
\sum_{\substack{u \in U_{i}, v \in J_{j}: \\ \text { Type } 1}} Z(u v) \leqslant m^{2} \cdot\left|V_{0}\right| \cdot n^{r-3} \leqslant \sqrt{\varepsilon_{0}} m^{2} n^{r-2},
$$

where the first inequality holds since there are at most m^{2} choices for u, v, at most $\left|V_{0}\right| \leqslant \sqrt{\varepsilon_{0}} n$ choices for a vertex in V_{0}, and at most n^{r-3} choices for the other $r-3$ vertices.

- Type 2: At least two vertices of $K_{r}^{-}(u v)$ are contained in the same part U_{p}. Then

$$
\sum_{\substack{u \in U_{i}, v \in U_{j}: \\ \text { Type } 2}} Z\left(u v E(G) \leqslant m^{2} \cdot(K-2) \cdot\binom{m}{2} \cdot n^{r-4}+m^{2} \cdot 2(m-1) \cdot n^{r-3} \leqslant \frac{5}{2} m^{3} n^{r-3} .\right.
$$

We briefly explain the first inequality as follows. Since there are at most m^{2} choices for u and v, if $p \in[M] \backslash\{i, j\}$, then there at most $K-2$ choices for the part U_{p}, at most $\binom{m}{2}$ choices for two vertices in U_{p}, and at most n^{r-4} choices for the remaining $r-4$ vertices; otherwise $p \in\{i, j\}$, there are at most $2(m-1)$ choices for w such that w lies in the part U_{i} or U_{j}, and at most n^{r-3} choices for the remaining $r-3$ vertices.

- Type 3: At least one edge of $K_{r}^{-}(u v)$ is not contained in an ε_{0}-homogeneous pair. As there are at most $\varepsilon_{0}\binom{K}{2}$ parts that are not ε_{0}-homogeneous, we have that

$$
\sum_{\substack{u \in U_{i}, v \in U_{j}: u v \notin E(G) \\ \text { yype } 3}} Z(u v) \leqslant m^{2} \cdot \varepsilon_{0}\binom{K}{2} m^{2} \cdot n^{r-4}+m^{2} \cdot 2 \sqrt{\varepsilon_{0}} K m \cdot n^{r-3} \leqslant\left(2 \sqrt{\varepsilon_{0}}+\varepsilon_{0}\right) m^{2} n^{r-2}
$$

The first inequality holds since there are at most m^{2} choices for u and v, if the non- ε_{0}-homogeneous pair does not involve U_{i} or U_{j}, then there are at most $\varepsilon_{0}\binom{K}{2} m^{2}$ choices for one edge which is not contained in an ε_{0}-homogeneous pairs, and at most n^{r-4} choices for the remaining $r-4$ vertices; otherwise, there are at most $2 \sqrt{\varepsilon_{0}} K m$ vertices belonging to the parts U_{q} such that $\left(U_{i}, U_{q}\right)$ or $\left(U_{j}, U_{q}\right)$ is not ε_{0}-homogeneous.

- Type 4: At least one edge of $K_{r}^{-}(u v)$ is contained in some ε_{0}-sparse pair. Then

$$
\sum_{\substack{u \in U_{i}, v \in U_{j}: u v \notin E(G) \\ \text { Type } 4}} Z(u v) \leqslant m^{2} \cdot\binom{K}{2} \varepsilon_{0} m^{2} \cdot n^{r-4}+2 \varepsilon_{0} m^{2} \cdot n \cdot n^{r-3} \leqslant 3 \varepsilon_{0} m^{2} n^{r-2}
$$

We briefly explain the first inequality as follows. If there is at least one edge of $K_{r}^{-}(u v)$ is contained in some ε_{0}-sparse pair and the ε_{0}-sparse pair does not intersect U_{i} or U_{j}, then totally there are at most m^{2} choices for u and v, at most $\binom{K}{2} \varepsilon_{0} m^{2}$ choices for one edge contained which is in an ε_{0}-sparse pair, and at most n^{r-4} choices for the remaining $r-4$ vertices. Otherwise, totally there are at most $2 \varepsilon_{0} m^{2} \cdot n$ triples $\left(u_{i}, u_{j}, u_{k}\right) \in U_{i} \times U_{j} \times U_{k}$ such that $u_{i} u_{k} u_{j}$ forms an induced path and $\left(U_{i}, U_{j}\right)$ is ε_{1}-sparse and at least one of $\left(U_{i}, U_{k}\right)$ and $\left(U_{j}, U_{k}\right)$ is ε_{0}-sparse, this is because there are at most $\varepsilon_{0} m^{2}$ edges between ε_{0}-sparse pairs. Finally, the number of choices for the remaining $r-3$ vertices is at most n^{r-3}.
As $\varepsilon_{1}=\frac{4 \sqrt{\varepsilon_{0}}}{\varepsilon}$, we have

$$
\sum_{u \in U_{i}, v \in U_{j}: u v \notin E(G)} Z(u v) \geqslant \varepsilon_{1} \varepsilon m^{2} n^{r-2}>\left(3 \sqrt{\varepsilon_{0}}+4 \varepsilon_{0}\right) m^{2} n^{r-2}+\frac{5 m^{3} n^{r-3}}{2} \geqslant \sum_{u \in U_{i}, v \in U_{j}: u v \notin E(G)} Z(u v),
$$

which leads to a contradiction. Note that the above argument also holds if $i=j$ by hypothesis $d\left(U_{i}\right)<1-\varepsilon_{1}$. Indeed, because G is K_{r}-free, by Turán's theorem the number of edges in $G\left[U_{i}\right]$ is at $\operatorname{most}\left(1-\frac{1}{r-1}\right)\binom{m}{2}<\left(1-\varepsilon_{1}\right) m^{2}$. The proof is finished.

By Proposition 1.2 and Claim 1.6, we can refine the original partition by Theorem 1.4 in the following lemma.
Lemma 1.7. For every integer $r \geqslant 3$, every real number $\varepsilon>0$ and $t=\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1$, there exists some $\varepsilon_{0}=\min \left\{\varepsilon^{10}, \frac{1}{10 r^{5}}\right\}$ such that the following holds. Let G be an n-vertex ε-ultra maximal K_{r}-free graph, then there exists a subset V_{0} with $\left|V_{0}\right| \leqslant \sqrt{\varepsilon_{0}} n$ such that $V(G) \backslash V_{0}$ can be equitably partitioned into at most $M \leqslant c(t, r)\left(\frac{1}{\varepsilon_{0}}\right)^{2(t+r-4)}$ parts $U_{1} \cup \cdots \cup U_{M}$ such that for any distinct $1 \leqslant i<j \leqslant M$, either $d\left(U_{i}, U_{j}\right)<\varepsilon_{2}$ or $d\left(U_{i}, U_{j}\right)>1-\varepsilon_{1}$, where $\varepsilon_{1}=\frac{4 \sqrt{\varepsilon_{0}}}{\varepsilon}$ and $\varepsilon_{2}=16 r \varepsilon_{0}$.
Proof of Lemma 1.7. Based on Claim 1.5 and Claim 1.6, it suffices to show that for any distinct $1 \leqslant i<j \leqslant M$. If $d\left(U_{i}, U_{j}\right) \leqslant 1-\varepsilon_{1}$, then $d\left(U_{i}, U_{j}\right)<\varepsilon_{2}$.

Recall $\left|U_{i}\right|=m=\frac{n}{K}$, we also set $C=\frac{1}{8 \varepsilon_{0}}$, and $\varepsilon_{2}=16 r \varepsilon_{0}$. Suppose for the sake of contradiction that there exist two parts, namely U_{r-1} and U_{r}, such that $\varepsilon_{2} \leqslant d\left(U_{r-1}, U_{r}\right) \leqslant 1-\varepsilon_{1}$. Then one can find $r-2$ subsets, say U_{1}, \ldots, U_{r-2}, that satisfy the conclusion of Claim 1.6. We will show that if $d\left(U_{r-1}, U_{r}\right) \geqslant \varepsilon_{2}$, then there must exist a copy of K_{r} whose r vertices are located in distinct parts U_{1}, \ldots, U_{r}.

Pick $x \in U_{r-1}$ and $y \in U_{r}$ uniformly and independently at random. Since by assumption $d\left(U_{r-1}, U_{r}\right) \geqslant \varepsilon_{2}$, we have $\operatorname{Pr}[x y \in E(G)] \geqslant \varepsilon_{2}$. To obtain the desired K_{r} using Proposition 1.2, we will show that with probability larger than $1-\varepsilon_{2},\left|N(x) \cap N(y) \cap U_{k}\right|$ are very large for all $k \in[r-2]$. To do so, note first that for every $k \in[r-2], \mathbb{E}\left[\left|N(x) \cap U_{k}\right|\right] \geqslant\left(1-\varepsilon_{0}\right) m$, which implies that $\mathbb{E}\left[\left|U_{k} \backslash\left(N(x) \cap U_{k}\right)\right|\right] \leqslant \varepsilon_{0} m$. Therefore, by Markov's inequality we have

$$
\operatorname{Pr}\left[\left|N(x) \cap U_{k}\right| \leqslant\left(1-C \varepsilon_{0}\right) m\right]=\operatorname{Pr}\left[\left|U_{k} \backslash\left(N(x) \cap U_{k}\right)\right| \geqslant C \varepsilon_{0} m\right] \leqslant \frac{1}{C}
$$

By the union bound, it is clear that

$$
\operatorname{Pr}\left[\exists k \in[r-2] \text { s.t. }\left|N(x) \cap U_{k}\right| \leqslant\left(1-C \varepsilon_{0}\right) m\right] \leqslant \frac{r-2}{C}
$$

Similarly, one can show that

$$
\operatorname{Pr}\left[\exists k \in[r-2] \text { s.t. }\left|N(y) \cap U_{k}\right| \leqslant\left(1-C \varepsilon_{0}\right) m\right] \leqslant \frac{r-2}{C} .
$$

Combining the above two inequalities and the union bound, it is not hard to see that

$$
\operatorname{Pr}\left[\forall k \in[r-2], \min \left\{\left|N(x) \cap U_{k}\right|,\left|N(y) \cap U_{k}\right|\right\} \geqslant\left(1-C \varepsilon_{0}\right) m\right] \geqslant 1-\frac{2 r-4}{C}>1-\varepsilon_{2} .
$$

Recall that $\operatorname{Pr}[x y \in E(G)] \geqslant \varepsilon_{2}$. It follows that there exist $x \in U_{r-1}$ and $y \in U_{r}$ such that $x y \in E(G)$ and for every $i \in[r-2]$, we have $\min \left\{\left|N(x) \cap U_{k}\right|,\left|N(y) \cap U_{k}\right|\right\} \geqslant\left(1-C \varepsilon_{0}\right) m$. Therefore, for each $k \in[r-2]$, we have $\left|N(x) \cap N(y) \cap U_{k}\right| \geqslant\left(1-2 C \varepsilon_{0}\right) m$. Let $W_{k}:=N(x) \cap N(y) \cap U_{k}$. Then it follows by Proposition 1.2 (i) that for every $1 \leqslant k<\ell \leqslant r-2$,

$$
d\left(W_{k}, W_{\ell}\right) \geqslant 1-\frac{\varepsilon_{0}}{\left(1-2 C \varepsilon_{0}\right)^{2}}=1-\frac{16 \varepsilon_{0}}{9} .
$$

As $\binom{r-2}{2} \cdot \frac{16 \varepsilon_{0}}{9} \leqslant \frac{8}{9} r^{2} \varepsilon_{0}<1$, it follows by Proposition 1.2 (ii) that there exists a copy of K_{r-2} whose $r-2$ vertices are located in distinct W_{k} 's. Together with x, y, we obtain a copy of K_{r} whose r vertices are located in distinct parts U_{1}, \ldots, U_{r}, a contradiction. This completes the proof.

It follows by Lemma 1.7 that for every $1 \leqslant i<j \leqslant M,\left(U_{i}, U_{j}\right)$ is either ε_{1}-dense or ε_{2}-sparse. Next, we will make all of the ε_{1}-dense pairs $\left(U_{i}, U_{j}\right)$ become complete bipartite graphs by simultaneously destroying all of the missing edges between these two parts.

Let \mathcal{P} be the set formed by all of the missing edges between the ε_{1}-dense pairs of parts, that is,

$$
\mathcal{P}:=\left\{x y \notin E(G): \exists 1 \leqslant i<j \leqslant M \text { s.t. } x \in U_{i}, y \in U_{j} \text { and }\left(U_{i}, U_{j}\right) \text { is } \varepsilon_{1} \text {-dense }\right\} .
$$

Let $S=\left\{x_{1} y_{1}, \ldots, x_{s} y_{s}\right\}$ be a maximal matching formed by the missing edges in \mathcal{P}. In other words, for each $1 \leqslant \ell \leqslant s$, we have $x_{\ell} y_{\ell} \notin E(G)$ and there exist $1 \leqslant \ell_{a}<\ell_{b} \leqslant M$ such that $x_{\ell} \in U_{\ell_{a}}, y_{\ell} \in U_{\ell_{b}}$ and $\left(U_{\ell_{a}}, U_{\ell_{b}}\right)$ is ε_{1}-dense; moreover, for every $x y \notin E(G)$ which is a missing edge between some ε_{1}-dense pair of parts, we must have $\{x, y\} \cap\left\{x_{\ell}, y_{\ell}: 1 \leqslant \ell \leqslant s\right\} \neq \varnothing$.

To better understand the properties of the maximal matching S, we also need the following new notations. We call an edge $x y \in E(G)$ sparse if there exist $1 \leqslant i<j \leqslant M$ such that $x \in U_{i}, y \in U_{j}$ and $\left(U_{i}, U_{j}\right)$ is ε_{2}-sparse. For an integer t, we call a copy of K_{t} with t vertices locating in t distinct U_{i} 's sparse if it contains at least one sparse edge, otherwise we call it dense. For each integer $3 \leqslant t \leqslant r-1$, it is not hard to check that the total number of sparse edges and sparse K_{t} 's in G is at most $\varepsilon_{2} n^{2}$ and $\varepsilon_{2} n^{2} \cdot n^{t-2}=\varepsilon_{2} n^{t}$, respectively.
Claim 1.8. For every $1 \leqslant \ell \leqslant s$ and $x_{\ell} y_{\ell} \in S, G\left[\left\{x_{\ell}, y_{\ell}\right\} \cap N\left(x_{\ell}, y_{\ell}\right)\right]$ contains at least $\frac{1}{3} \varepsilon n^{r-2}$ sparse K_{r-1} 's whose vertex set has non-empty intersection with $\left\{x_{\ell}, y_{\ell}\right\}$.

Proof. Recall that by assumption we have $x_{\ell} y_{\ell} \notin E(G)$ and there exist $1 \leqslant \ell_{a}<\ell_{b} \leqslant M$ such that $x_{\ell} \in U_{\ell_{a}}, y_{\ell} \in U_{\ell_{b}}$ and $\left(U_{\ell_{a}}, U_{\ell_{b}}\right)$ is ε_{1}-dense. Moreover, the induced subgraph $G\left[N\left(x_{\ell}, y_{\ell}\right)\right]$ contains at least εn^{r-2} copies of K_{r-2} 's. Note that the number of K_{r-2} 's with at least two vertices belonging to the same U_{i} is at most $K m^{2} n^{r-4} \leqslant \frac{n^{r-2}}{K}$, and the number of K_{r-2} 's with non-empty intersection with $U_{\ell_{a}} \cup U_{\ell_{b}}$ is at most $2 m n^{r-3} \leqslant \frac{2 n^{r-2}}{K}$. Therefore, by our choice of ε_{0} and $K, G\left[N\left(x_{\ell}, y_{\ell}\right)\right]$ contains at least

$$
\varepsilon n^{r-2}-\frac{3 n^{r-2}}{K} \geqslant \frac{2}{3} \varepsilon n^{r-2}
$$

copies K_{r-2} 's whose $r-2$ vertices are located in $r-2$ distinct U_{i} 's, where $1 \leqslant i \leqslant M$ and $i \notin\left\{\ell_{a}, \ell_{b}\right\}$. It follows that $G\left[N\left(x_{\ell}, y_{\ell}\right)\right]$ contains either at least $\frac{1}{3} \varepsilon n^{r-2}$ dense K_{r-2} 's or at least $\frac{1}{3} \varepsilon n^{r-2}$ sparse K_{r-2} 's, which are disjoint from $U_{\ell_{a}} \cup U_{\ell_{b}}$. We then consider the following two cases, depending on the number of dense and sparse K_{r-2} 's in $G\left[N\left(x_{\ell}, y_{\ell}\right)\right]$.

Case 1. Suppose that $G\left[N\left(x_{\ell}, y_{\ell}\right)\right]$ contains at least $\frac{1}{3} \varepsilon n^{r-2}$ dense K_{r-2} 's, which are disjoint from $U_{\ell_{a}} \cup U_{\ell_{b}}$. Then note first that as $\binom{r}{2} \varepsilon_{1}<1$, it follows by Proposition 1.2 that G contains no dense K_{r}. Consider an arbitrary dense K_{r-2} in $G\left[N\left(x_{\ell}, y_{\ell}\right)\right]$, say with vertices v_{1}, \ldots, v_{r-2}, which are disjoint from $U_{\ell_{a}} \cup U_{\ell_{b}}$. Then there are distinct integers $1 \leqslant k_{1}, \ldots, k_{r-2} \leqslant M$, $\left\{k_{1}, \ldots, k_{r-2}\right\} \cap\left\{\ell_{a}, \ell_{b}\right\}=\varnothing$ such that for every $1 \leqslant t \leqslant r-2, v_{t} \in U_{k_{t}}$, and all pairs of $U_{k_{1}}, \ldots, U_{k_{r-2}}$ are ε_{1}-dense. Since G contains no dense K_{r} and $\left(U_{\ell_{a}}, U_{\ell_{b}}\right)$ is ε_{1}-dense, at least one of the $2 r-4$ pairs $\left\{\left(U_{\ell_{a}}, U_{k_{t}}\right),\left(U_{\ell_{b}}, U_{k_{t}}\right): 1 \leqslant t \leqslant r-2\right\}$ is ε_{2}-sparse, which implies that at least one of the $2 r-4$ edges $\left\{x_{\ell} v_{i}, y_{\ell} v_{i}: 1 \leqslant t \leqslant r-2\right\}$ is sparse. Thus, each such dense K_{r-2} produces one copy of sparse K_{r-1} whose vertex set has non-empty intersection with $\left\{x_{\ell}, y_{\ell}\right\}$.

Case 2. Suppose $G\left[N\left(x_{\ell}, y_{\ell}\right)\right]$ contains at least $\frac{1}{3} \varepsilon n^{r-2}$ sparse K_{r-2} 's, which are disjoint from $U_{\ell_{a}} \cup U_{\ell_{b}}$. Then together with x_{ℓ} and y_{ℓ}, each such sparse K_{r-2} produces two sparse K_{r-1} 's in G. Therefore, $G\left[\left\{x_{\ell}, y_{\ell}\right\} \cup N\left(x_{\ell}, y_{\ell}\right)\right]$ contains at least $\frac{1}{3} \varepsilon n^{r-2}$ sparse K_{r-1} 's whose vertex set has non-empty intersection with $\left\{x_{\ell}, y_{\ell}\right\}$.

Then the proof is finished.
By Claim 1.8, we can obtain the following upper bound on s.
Corollary 1.9. $s \leqslant \frac{6(r-1) \varepsilon_{2} n}{\varepsilon}$.
Proof of claim. Note that $\left\{x_{\ell}, y_{\ell}\right\} \cap\left\{x_{\ell^{\prime}}, y_{\ell^{\prime}}\right\}=\varnothing$ for $\ell \neq \ell^{\prime}$, and each sparse K_{r-1} can lie in at most $r-1$ distinct induced subgraphs $G\left[\left\{x_{\ell}, y_{\ell}\right\} \cup N\left(x_{\ell}, y_{\ell}\right)\right]$. Therefore, by Claim 1.8, G contains $\frac{1}{r-1} \cdot \frac{s}{2} \cdot \frac{1}{3} \varepsilon n^{r-2}$ distinct sparse K_{r-1} 's. Moreover, we already know that the total number sparse K_{r-1} 's in G is at most $\varepsilon_{2} n^{2} \cdot n^{r-3}=\varepsilon_{2} n^{r-1}$, which implies that $s \leqslant \frac{6(r-1) \varepsilon_{2} n}{\varepsilon}$.

Now we move all of these $2 s$ vertices in S to V_{0}, and we know that $\left|V_{0}\right| \leqslant\left(\frac{12(r-1) \varepsilon_{2}}{\varepsilon}+\sqrt{\varepsilon_{0}}\right) n$. We also denote $Z_{i}:=U_{i} \backslash\left\{x_{\ell}, y_{\ell}: 1 \leqslant \ell \leqslant s\right\}, 1 \leqslant i \leqslant M$. By the maximality of S, if $\left(U_{i}, U_{j}\right)$ is ε_{1}-dense then $\left(Z_{i}, Z_{j}\right)$ is either complete, or at least one of Z_{i}, Z_{j} is anti-complete.

To sum up, we have shown that by moving at most $\frac{12(r-1) \varepsilon_{2} n}{\varepsilon}$ vertices from $\bigcup_{i=1}^{M} U_{i}$ to V_{0}, we can make all of the ε_{1}-dense pairs $\left(U_{i}, U_{j}\right)$ become complete. Then we can see $V_{0}, Z_{1}, \ldots, Z_{M}$ form a new partition of $V(G)$ with $\left|V_{0}\right| \leqslant\left(\frac{12(r-1) \varepsilon_{2}}{\varepsilon}+\sqrt{\varepsilon_{0}}\right) n$. Let $\varepsilon_{3}=\varepsilon^{3}$. We will slightly refine the above partition by removing all vertices in the Z_{i} 's with $\left|Z_{i}\right|<\left(1-\varepsilon_{3}\right) m$, and decreasing the size of all the remaining Z_{j} 's to $\left(1-\varepsilon_{3}\right) m$ by removing some arbitrary $\left|Z_{j}\right|-\left(1-\varepsilon_{3}\right) m \leqslant \varepsilon_{3} m$ vertices. We will put all of the abandoned vertices to V_{0}. For convenience, we still denote this exceptional set by V_{0}. Clearly, in the first step of the refinement above, we have removed at most $\left(1-\varepsilon_{3}\right) m \cdot \frac{12(r-1) \varepsilon_{2} n / \varepsilon}{\varepsilon_{3} m} \leqslant \frac{12(r-1) \varepsilon_{2} n}{\varepsilon_{3} \varepsilon}$ vertices, and in the second step, we have removed at most $\varepsilon_{3} n$ vertices. Finally, we obtain a new partition of $V(G)=V_{0} \cup Z_{1} \cup Z_{2} \cup \cdots \cup Z_{J}$, where $J \leqslant M \leqslant K$, $\left|Z_{i}\right|=\left(1-\varepsilon_{3}\right) m$ and $\left|V_{0}\right| \leqslant \frac{12(r-1) \varepsilon_{2} n}{\varepsilon_{3} \varepsilon}+\varepsilon_{3} n+\left(\frac{12(r-1) \varepsilon_{2}}{\varepsilon}+\sqrt{\varepsilon_{0}}\right) n \leqslant 2 \varepsilon^{3} n$. Moreover, For each $1 \leqslant i<j \leqslant J$, the pair $\left(Z_{i}, Z_{j}\right)$ is either complete, or $\frac{\varepsilon_{2}}{\left(1-\varepsilon_{3}\right)^{2}}$-sparse.

For each $i \in[J]$, since each $G\left[Z_{i}\right]$ is K_{r}-free, by Turán's theorem we know that for each Z_{i}, $e\left(G\left[Z_{i}\right]\right) \leqslant \frac{r-2}{r-1}\binom{\left|Z_{i}\right|}{2}$, which implies that there are at least $\frac{1}{r-1}\binom{\left(1-\varepsilon_{3}\right) m}{2} \geqslant \frac{m^{2}}{16(r-1)} \geqslant \varepsilon_{1} m^{2}$ many missing edges in $G\left[Z_{i}\right]$. Then Claim 1.6 states that for any Z_{i}, there exist distinct integers $k_{1}, k_{2}, \ldots, k_{r-2} \in$ $[J] \backslash\{i\}$ such that $\left(Z_{a}, Z_{b}\right)$ are ε_{1}-dense for all $(a, b) \in\left(\frac{\left\{i, k_{1}, \ldots, k_{r-2}\right\}}{2}\right)$. Moreover, since we have proved the ε_{1}-dense pairs indeed form complete bipartite graphs and G is K_{r}-free, the following result holds.

Claim 1.10. For any $1 \leqslant i \leqslant J, Z_{i}$ is an independent set.

Similarly, suppose that $\left(Z_{i}, Z_{j}\right)$ is $\frac{\varepsilon_{2}}{\left(1-\varepsilon_{3}\right)^{2}}$-sparse, then via a simple modification of the proof of Claim 1.6, we can show there exist distinct integers $k_{1}, k_{2}, \ldots, k_{r-2} \in[J] \backslash\{i, j\}$ such that $\left(Z_{a}, Z_{b}\right)$ form complete bipartite graphs for all $(a, b) \in\left(\frac{\left\{i, j, k_{1}, \ldots, k_{r-2}\right\}}{2}\right) \backslash(i, j)$. Also by the by the assumption that G is K_{r}-free, we have the following consequence.

Claim 1.11. For any Z_{i}, Z_{j} with $1 \leqslant i<j \leqslant J$, if $\left(Z_{i}, Z_{j}\right)$ is not complete, then $\left(Z_{i}, Z_{j}\right)$ is anticomplete.

Through the above analysis, now we know that $G\left[V \backslash V_{0}\right]=G\left[Z_{1} \cup \cdots \cup Z_{J}\right]$ can be viewed as a ($1-\varepsilon_{3}$) m-blow-up of some K_{r}-free graph. Next, we consider the vertices in V_{0}.

Claim 1.12. For any vertex $v \in V_{0}$ and any Z_{i}, either $N_{Z_{i}}(v)=\varnothing$ or $N_{Z_{i}}(v)=Z_{i}$.
Proof of claim. Suppose that there exist two vertices $u_{1}, u_{2} \in Z_{i}$ such that $v u_{1} \in E(G)$ and $v u_{2} \notin E(G)$, then by assumption, $G\left[N\left(v, u_{2}\right)\right]$ contains $\varepsilon n^{r-2}-\left|V_{0}\right| n^{r-3} \geqslant \frac{\varepsilon n^{r-2}}{2}$ many K_{r-2} such that all of the $r-2$ vertices are in $Z_{1} \cup \cdots \cup Z_{J}$. By Claim 1.10, these $r-2$ vertices, say $u_{i_{1}}, \ldots, u_{i_{r-2}} \notin Z_{i}$ should lie in distinct parts $Z_{i_{1}}, \ldots, Z_{i_{r-2}}$, where $i_{x} \neq i$ for any $x \in[r-2]$. Moreover, we know that if there is an edge between any pair $\left(Z_{i}, Z_{j}\right)$, then this pair $\left(Z_{i}, Z_{j}\right)$ forms a complete bipartite graph, therefore, $v u_{1} u_{i_{1}} \cdots u_{i_{r-2}}$ forms a copy of K_{r}, a contradiction.

Then we partition the vertex set V_{0} by the following rule. For any subset $A \subseteq[J]$, we put the vertex $v \in V_{0}$ into H_{A} if and only if $N(v) \backslash V_{0}=\bigcup_{a \in A} Z_{a}$. therefore, we partition V_{0} into at most 2^{J} parts, denoted as $V_{0}=H_{1} \cup H_{2} \cup \cdots \cup H_{T}$, where $T \leqslant 2^{J} \leqslant 2^{K}$.

Claim 1.13. For any pair $\left(H_{i}, H_{j}\right), H_{i}, H_{j}$ is either complete or anti-complete.
Proof of claim. For any pair H_{i}, H_{j}, suppose that there are two pairs of vertices $v_{1} u_{1} \in E(G)$ and $v_{2} u_{2} \notin E(G)$, then by assumption that $G\left[N\left(v_{2}, u_{2}\right)\right]$ contains $\varepsilon n^{r-2}-\left|V_{0}\right| n^{r-3} \geqslant \frac{\varepsilon n^{r-2}}{2}$ many K_{r-2} 's such that all of the $r-2$ vertices are in $Z_{1} \cup \cdots \cup Z_{J}$. By Claim 1.10, these $r-2$ vertices, namely, $u_{i_{1}}, \ldots, u_{i_{r-2}}$ should lie in distinct parts $Z_{i_{1}}, \ldots, Z_{i_{r-2}}$. By Claim 1.12, we know all of the pairs (H_{a}, Z_{b}) form complete bipartite graphs for all $a \in\{i, j\}$ and $b \in\left\{i_{1}, \ldots, i_{r-2}\right\}$. Therefore, $v_{1} u_{1} u_{i_{1}} \cdots u_{i_{r-2}}$ forms a copy of K_{r}, a contradiction.

Trivially the above argument gives that $L \leqslant 2^{K}+K \leqslant 2^{c\left(\frac{1}{\varepsilon_{0}}\right)^{2 t+2 r-7}}$, as $\varepsilon_{0}=\min \left\{\varepsilon^{10}, \frac{1}{10 r^{5}}\right\}$, $t=\left\lfloor\frac{1}{\varepsilon}\right\rfloor+1$ and c only depends on ε and r. More carefully, we can further improve the estimation. By the role of partition of V_{0}, we consider the set system

$$
\mathcal{F}:=\left\{F \subseteq[J]: \text { there is some vertex } v \in V_{0} \text { such that } N(v) \backslash V_{0}=\bigcup_{j \in F} Z_{j}\right\} .
$$

Suppose that $|\mathcal{F}|>\sum_{i=0}^{t+r-4}\binom{|J|}{i}$, then Lemma 1.3 tells that there is a subset $A \subseteq[J]$ with $|A|=t+r-3$ such that A is shattered by \mathcal{F}. We can pick one vertex from each Z_{i} with $i \in A$ respectively, say $a_{1}, a_{2}, \ldots, a_{t+r-3}$. By definition of \mathcal{F}, for any subset $B \subseteq\left\{a_{1}, a_{2}, \ldots, a_{t+r-3}\right\}$, we can find some vertex v_{B} in V_{0} such that $N\left(v_{B}\right) \cap\left\{a_{1}, a_{2}, \ldots, a_{t+r-3}\right\}=B$, which implies that the VC-dimension of G is at least $t+r-3$, a contradiction to Claim 1.5 . Therefore, $|\mathcal{F}| \leqslant \sum_{i=0}^{t+r-4}\binom{|J|}{i}$, which means $T \leqslant \sum_{i=0}^{t+r-4}\binom{|J|}{i}$. Therefore, $L \leqslant J+\sum_{i=0}^{t+r-4}\binom{|J|}{i}=2^{c\left(\frac{1}{\varepsilon}+r\right)^{2}} \log \max \left\{\frac{1}{\varepsilon^{10}}, 10 r^{5}\right\}$ for some absolute constant $c>0$. This finishes the proof.

References

[1] N. Alon, E. Fischer, and I. Newman. Efficient testing of bipartite graphs for forbidden induced subgraphs. SIAM J. Comput., 37(3):959-976, 2007.
[2] J. Fox, J. Pach, and A. Suk. Erdős-Hajnal conjecture for graphs with bounded VC-dimension. Discrete Comput. Geom., 61(4):809-829, 2019.
[3] W. Goddard and J. Lyle. Dense graphs with small clique number. J. Graph Theory, 66(4):319-331, 2011.
[4] L. Lovász and B. Szegedy. Regularity partitions and the topology of graphons. In An irregular mind, volume 21 of Bolyai Soc. Math. Stud., pages 415-446. János Bolyai Math. Soc., Budapest, 2010.
[5] T. Łuczak. On the structure of triangle-free graphs of large minimum degree. Combinatorica, 26(4):489-493, 2006.
[6] N. Sauer. On the density of families of sets. J. Comb. Theory, Ser. A, 13:145-147, 1972.
[7] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math., 41:247-261, 1972.
[8] E. Szemerédi. Regular partitions of graphs. Problèmes combinatoires et théorie des graphes, Orsay 1976, Colloq. int. CNRS No. 260, 399-401 (1978)., 1978.
[9] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl., 16:264-280, 1971.

[^0]: *Extremal Combinatorics and Probability Group (ECOPRO), Institute for Basic Science (IBS), Daejeon, South Korea. Emails: $\{$ hongliu, zixiangxu\}@ibs.re.kr. Supported by IBS-R029-C4.
 ${ }^{\dagger}$ Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China, and the Frontiers Science Center for Nonlinear Expectations, Ministry of Education, Qingdao 266237, China. Email: theoreming@163.com. Supported by the National Natural Science Foundation of China under Grant Nos. 12101364 and 12231014, and the Natural Science Foundation of Shandong Province under Grant No. ZR2021QA005.
 ${ }^{\ddagger}$ Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, UK. Email: j.skokan@lse.ac.uk

