Multi-color Ramsey numbers of K_{4} versus K_{t}

Abstract

Based on a recent breakthrough on Ramsey number of $R\left(K_{4}, K_{t}\right)$ and a standard application of random blowup methods, we can show that $R_{k}\left(K_{4} ; K_{t}\right)=\tilde{\Theta}\left(t^{2 k+1}\right)$.

1 Main result

Let $R_{k}\left(H ; K_{t}\right)$ be the minimum number N such that for any $(k+1)$-coloring of K_{N}, there is no H in each color class $i, 1 \leqslant i \leqslant k$, and no K_{t} in color class $k+1$. A recent breakthrough of Mattheus and Verstraëte [4] showed that $R_{1}\left(K_{4} ; K_{t}\right) \geqslant \Omega\left(\frac{t^{3}}{\log ^{4} t}\right)$, matches the upper upper bound in [1] up to a factor of order $\log ^{2} t$. Based on this and the blowup method introduced by Alon and Rödl [2], we give a simple consequence and the upper bound $O\left(\frac{t^{2 k+1}}{\log ^{2 k} t}\right)$ can be found in [3].
Theorem 1.1. $R_{k}\left(K_{4} ; K_{m}\right)=\tilde{\Theta}\left(m^{2 k+1}\right)$.
Proof. Let t be a sufficiently large integer, $n=\frac{c_{1} t^{3}}{\log ^{4} t}, r=c_{2} t^{2 k-2} \log ^{a} t, m=t \log t$. One can check that $t\binom{N}{t}\binom{r t}{m}<\binom{r N}{m}^{(k-1) / k}$ by suitable choices of c_{1}, c_{2} and a. Let H be an n-vertex K_{4}-free graph with $\alpha(H)<t$ in [4]. Let G be an r-blowup of H, so $|V(G)|:=N=r n$ and G is also K_{4}-free. We randomly embed k copies of G into an N-set and denote them as $G_{1}, G_{2}, \ldots, G_{k}$. Let G_{k+1} be the graph on the same N-set and the edge set of G_{k+1} consists of all pairs which do not belong to any $E\left(G_{i}\right)$ for $1 \leqslant i \leqslant k$. We color K_{N} in the following way, for an edge $e \in E\left(K_{N}\right)$, we color it i if i is the minimum index such that $e \in E\left(G_{i}\right)$ and color it $k+1$ if there is no such G_{i}.

For each $1 \leqslant i \leqslant k$, there is no K_{4} in the color class i. Let M be the number of independent sets of size m in G, note that M is at most $\sum_{t^{\prime} \leqslant t}\binom{N}{t^{\prime}}\binom{r t^{\prime}}{m} \leqslant t\binom{N}{t}\binom{r t}{m}$, because each vertex in K_{m} of G_{k+1} should come from some independent set in H and $\alpha(H)<t$. Then for any m-subset in K_{N}, the probability that it forms an K_{m} in G_{k+1} is $\left(\frac{M}{\binom{r N}{m}}\right)^{k}$, and the expected number of K_{m} is $\binom{r N}{m}\left(\frac{M}{\binom{r N}{m}}\right)^{k}<1$. Therefore there exist some suitable mappings such that $G_{1}, G_{2}, \ldots, G_{k}$ are K_{4}-free and G_{k+1} is K_{m}-free, which gives $R_{k}\left(K_{4} ; K_{m}\right) \geqslant c_{1} c_{2} m^{2 k+1} / \log ^{a-4} t$.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. A note on Ramsey numbers. J. Combin. Theory Ser. A, $29(3): 354-360,1980$.
[2] N. Alon and V. Rödl. Sharp bounds for some multicolor Ramsey numbers. Combinatorica, 25(2):125-141, 2005.
[3] X. He and Y. Wigderson. Multicolor Ramsey numbers via pseudorandom graphs. Electron. J. Combin., 27(1):Paper No. 1.32, 8, 2020.
[4] S. Mattheus and J. Verstraëte. The asymptotics of $r(4, t)$. arXiv preprint, arXiv: 2306.04007, 2023.

