Multi-color Ramsey numbers of K_4 versus K_t

Abstract

Based on a recent breakthrough on Ramsey number of $R(K_4, K_t)$ and a standard application of random blowup methods, we can show that $R_k(K_4; K_t) = \tilde{\Theta}(t^{2k+1})$.

1 Main result

Let $R_k(H; K_t)$ be the minimum number N such that for any (k + 1)-coloring of K_N , there is no H in each color class $i, 1 \leq i \leq k$, and no K_t in color class k + 1. A recent breakthrough of Mattheus and Verstraëte [4] showed that $R_1(K_4; K_t) \geq \Omega(\frac{t^3}{\log^4 t})$, matches the upper upper bound in [1] up to a factor of order $\log^2 t$. Based on this and the blowup method introduced by Alon and Rödl [2], we give a simple consequence and the upper bound $O(\frac{t^{2k+1}}{\log^{2k} t})$ can be found in [3].

Theorem 1.1. $R_k(K_4; K_m) = \tilde{\Theta}(m^{2k+1}).$

Proof. Let t be a sufficiently large integer, $n = \frac{c_1 t^3}{\log^4 t}$, $r = c_2 t^{2k-2} \log^a t$, $m = t \log t$. One can check that $t\binom{N}{t}\binom{rt}{m} < \binom{rN}{m}^{(k-1)/k}$ by suitable choices of c_1 , c_2 and a. Let H be an n-vertex K_4 -free graph with $\alpha(H) < t$ in [4]. Let G be an r-blowup of H, so |V(G)| := N = rn and G is also K_4 -free. We randomly embed k copies of G into an N-set and denote them as G_1, G_2, \ldots, G_k . Let G_{k+1} be the graph on the same N-set and the edge set of G_{k+1} consists of all pairs which do not belong to any $E(G_i)$ for $1 \leq i \leq k$. We color K_N in the following way, for an edge $e \in E(K_N)$, we color it i if i is the minimum index such that $e \in E(G_i)$ and color it k + 1 if there is no such G_i .

For each $1 \leq i \leq k$, there is no K_4 in the color class *i*. Let *M* be the number of independent sets of size *m* in *G*, note that *M* is at most $\sum_{t' \leq t} {N \choose t'} {rt' \choose m} \leq t {N \choose t} {rt \choose m}$, because each vertex in K_m of G_{k+1} should come from some independent set in *H* and $\alpha(H) < t$. Then for any *m*-subset in K_N , the probability that it forms an K_m in G_{k+1} is $(\frac{M}{{rN \choose m}})^k$, and the expected number of K_m is ${rN \choose m} (\frac{M}{{rN \choose m}})^k < 1$. Therefore there exist some suitable mappings such that G_1, G_2, \ldots, G_k are K_4 -free and G_{k+1} is K_m -free, which gives $R_k(K_4; K_m) \geq c_1 c_2 m^{2k+1} / \log^{a-4} t$.

References

- M. Ajtai, J. Komlós, and E. Szemerédi. A note on Ramsey numbers. J. Combin. Theory Ser. A, 29(3):354–360, 1980.
- [2] N. Alon and V. Rödl. Sharp bounds for some multicolor Ramsey numbers. Combinatorica, 25(2):125-141, 2005.
- [3] X. He and Y. Wigderson. Multicolor Ramsey numbers via pseudorandom graphs. *Electron. J. Combin.*, 27(1):Paper No. 1.32, 8, 2020.
- [4] S. Mattheus and J. Verstraëte. The asymptotics of r(4, t). arXiv preprint, arXiv: 2306.04007, 2023.