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Problem 13A-1

Planar graph is odd 5-colorable
Proposed by Ilkyoo Choi, Hankuk University of Foreign Studies

A graph is odd k-colorable if it has a proper k-coloring where every vertex has a color appearing
an odd number of times on its neighborhood. PetruSevski and Skrekovski conjectured that every
planar graph is odd 5-colorable. It is known that every planar graph is odd 8-colorable.



Problem 13A-2

On degree condition for connectivity keeping paths
in k-connected triangle-free graphs

Proposed by Shinya Fujita, Yokohama City University

Let m, k be integers with m > 1,k > 2. For a k-connected graph G, a subgraph H of G is k-
removable if G —V (H) is still a k-connected graph. A graph is triangle-free if it contains no triangle
as a subgraph.

In [1], T showed that if G is a k-connected triangle-free graph with minimum degree at least
k+ (m —1)/2, then for any vertex v € V(G), there exists a path P on m vertices starting from v
such that G — V(P) is a (k — 1)-connected graph.

Considering the complete bipartite graph Ky (;—1)/2—1,k+(m—1)/2—1 for odd m > 3, we see that
the minimum degree bound is best possible. But we do not know the sharpness for even m in this
result.

Can we improve the minimum degree condition for even m? Or, does there exist a construction
showing the sharpness of the minimum degree bound “k +m/2” for even m? I would like to propose
this as an open question.

References

[1] S. Fuyita, Connectivity keeping paths containing prescribing vertices in highly connected
triangle-free graphs, J. Combin. Theory Ser. B 174:190-206 (2025).



Problem 13A-3

List coloring of 3-chromatic planar graphs
Proposed by Masaki Kashima, Keio University

It is well known that every planar graph is 5-choosable and every planar bipartite graph is 3-
choosable. As every planar graph is 4-colorable and every bipartite graph is 2-colorable, it is natural
to ask whether every 3-colorable planar graph is 4-choosable.

However, Voigt and Wirth [2] constructed a 3-colorable planar graph which is not 4-choosable.
Then, what is a sufficient condition for a 3-chromatic planar graph to be 4-choosable? We pose the
following problem.

Problem 1. Is every planar graph that can be partitioned into an independent set and an induced
forest 4-choosable?

Obviously, if G has a vertex partition into an independent set and an induced forest, then G is
3-colorable. We remark that the following lemma implies that the statement is true if the forest is a
matching.

Lemma 2 (Kostochka and Yancy [1]). Let G be a graph and let A be an independent set of G. Let
D be a digraph obtained from G by replacing each edge in G — A by a pair of symmetric arcs and
orienting each edge between A and V(G) \ A arbitrary. Then D is kernel-perfect.

This problem is also related to the notion of A-choosability, which was introduced by Zhu [3].

References

[1] A. Kostochka and M. Yancy, Ore’s conjecture on color-critical graph is almost true, J. Combin.
Theory Ser. B 109 (2014), 73-101.

[2] M. Voigt and B. Wirth, On 3-colorable non 4-choosable planar graphs, J. Graph Theory 24 (3)
(1997), 233-235.

[3] X. Zhu, A refinement of choosability of graphs, J. Combin. Theory Ser. B 141 (2020), 143-164.



Problem 13A-4

Chromatic number of square of cubic bipartite planar graph

Proposed by Seog-Jin Kim, Konkuk University

Dvordk et. al [2] and Feder et. al [3] conjectured the following.
Conjecture 1. Is it true that x(G?) < 6 if G is a cubic bipartite planar graph?

This bound is tight, as exemplified by the hexagonal prism. Feder et al. [3] verified Conjecture
1 in special cases, showing that x(G?) < 6 if the faces of a bipartite cubic plane graph can be three-
colored red, blue, and green such that red faces have even size and blue and green faces have sizes
divisible by four.

As a natural direction, we can ask the following question.

Problem 2. Is it true that x,(G?) < 6 if G is a cubic bipartite planar graph?

References

[1] D. W. Cranston, Coloring, List Coloring, and Painting Squares of Graphs (and Other Related
Problems), Electron. J. Combin. 30(2) (2023), #DS25.

[2] Z. Dvorék, R. Skrekovski, and M. Tancer, List-coloring squares of sparse subcubic graphs, STAM
J. Discrete Math. 22 (2008), no. 1, 139-159

[3] T. Feder, P. Hell, and C. Subi, Distance-two colourings of Barnette graphs, European J. Combin.
91 (2021), Paper No. 103210.



Problem 13A-5

Saturation numbers of cycles
Proposed by Younjin Kim, POSTECH

Given a graph F', a graph G is said to be F'-saturated if G is F-free and, for any two nonadjacent
vertices « and y of GG, the graph G + xy contains a copy of F'. The saturation number of F', denoted
by sat(n, F'), is the minimum number of edges in an F-saturated graph on n vertices. Tuza [4]
conjectured that for every graph F', there exists a constant ¢y such that sat(n, F') = cpn 4+ O(1).

Let C} denote the cycle graph on k vertices. Fiiredi and Kim [2] established the bounds

kE+3 k-3 k—4
-1
L <sat(n,C’k)<k_4n—|-< 5 >

for £k > 7 and n > 2k — 5, and proposed the following conjecture.

Conjecture 1 (Fiiredi-Kim, 2013). There exists a constant ko such that

k—3

sat(n,Cy) = -

n+ O(k?)

holds for all integers k > k.

Recently, Mohammadian, Poursoltani, and Tayfeh-Rezaie [3] confirmed this for even cycles of
length at least 28.
Theorem 2 ([3]). For each fized even integer k > 28, sat(n,Cy) = %n +0O(1).

This verifies Tuza’s conjecture for even cycles of length at least 28. However, the following cases
remain open.

Problem 3. Prove that sat(n,Cy) = ]]z:in + O(1) for even integers 8 < k < 26.
Problem 4. Prove that sat(n, Cy) = ¥=3n + O(1) for odd integers k > 7.

Note that Cs is exceptional: Lan et al. [1] proved sat(n,Cs) = %n +0(1) # 2n+0(1).

References

[1] Y. Lan, Y. Shi, Y. Wang, J. Zhang. The saturation number of Cg. Discrete Math. 348 (2025),
114504.

[2] Z. Firedi, Y. Kim. Cycle-saturated graphs with minimum number of edges. J. Graph Theory 73
(2013), 203-215.

[3] A. Mohammadian, M. Poursoltani, B. Tayfeh-Rezaie. On saturation numbers of complete multi-
partite graphs and even cycles. arXiv:2506.09767, 2025.

[4] Zs. Tuza. Asymptotic growth of sparse saturated structures is locally determined. Discrete Math.
108 (1992), 397-402.



Problem 13A-6

Lower bounds for semiproper colourings
Proposed by Joonkyung Lee, Yonsei University

Amongst d-regular graphs, which one has fewest independent sets? One may easily guess that
the answer should be the complete graph K;;1. Indeed, this is a theorem of Cutler and Radcliffe [1],
stating that

Z(G)]./U(G) > i(Kd+1)1/(d+1)

holds for any d-regular graph G, where i(G) denotes the number of independent sets in a graph G.
Sah, Sawhney, Stoner and Zhao [2] generalised this to a possibly irregular graphs G.

An analogous minimisation question can also be asked for the number of ¢g-colourings, for which
the answer is again the complete graph Ky.1. Namely, Csikvari’s theorem, recorded in Zhao’s
survey [3], states that

cq<G)l/v(G) > Cq<Kd+1)l/(d+1)

holds for any d-regular graph G, where c,(G) denotes the number of proper g-colourings of G. This
also generalises to irregular graphs too, by a minor modification of the proof.

Having seen the similarity of these results, it is natural to look for a common generalisation, as
follows. Let K go be the graph obtained by adding ¢ self-loops to K, without making multi-loops.
Then i(G) = hom(G, K5°) with ¢ = 1 and ¢4(G) = hom(G,Kgo) with ¢ = 0. This is the so-called
semiproper colourings, where the looped vertices correspond to ‘free’ colours that can be used without
restrictions. For each 0 < ¢ < ¢, we conjecture that

hom(G,Kgo)l/v(G) > hom (K41, K§o>1/(d+1)

holds for any d-regular graph G. The first interesting case, ¢ = 3 and ¢ = 1 even remains open.

References

[1] Jonathan Cutler and Andrew J. Radcliffe, The mazimum number of complete subgraphs of fized
size in a graph with given maximum degree. J. Graph Theory 84.2 (2017), pp. 134-145.

[2] Ashwin Sah, Mehtaab Sawhney, David Stoner, and Yufei Zhao, The number of independent sets
in an irreqular graph. J. Combin. Theory Ser. B 138 (2019), pp. 172-195.

[3] Yufei Zhao, Extremal regular graphs: independent sets and graph homomorphisms. Amer. Math.
Monthly 124.9 (2017), pp. 827-843.



Problem 13B-1

List packing number on d-trees
Proposed by Shun-ichi Maezawa, Nihon University

For a graph G, a list assignment L of G is a mapping such that each v € V(G) is assigned a list of
colors L(v). For a positive integer k, a k-list assignment is a list assignment for which each list has size
k. An L-coloring c is a proper coloring such that ¢(v) € L(v) for v € V(G). For a list-assignment L of
a graph G, an L-packing of G of size k is a collection of k mutually disjoint L-colorings c¢1,ca, ..., cg
of G, that is, ¢;(v) # ¢;(v) for any distinct ¢,j € {1,2,...,k} and any v € V(G). The list packing
number x;(G) of a graph G is the maximum integer £ such that G admits a L-packing of size k for
any list assignment L of G. Cambie et al. [1] proved that d+ 2 < xj(G) < 2d for every d-degenerate
graph G, where a graph G is d-degenerate if every induced subgraph of G has a vertex of degree at
most d.

A graph G is a d-tree if there is a sequence Kg,1 = Go, G1, ..., Gy = G of induced subgraphs of
G such that for every integer 1 < < m, there is a vertex v;1 411 € V(G;) \ V(G,-1) satisfying that
V(G;) = V(Gi—1)U{vita+1} and Ng(viyar1) NV (Gi—1) is a clique of order d of G. Note that a d-tree
is a d-degenerate graph. Vey recently, Kashima, Zhu, and I have proved that d+2 < xj(G) < 2d—1
for every d-tree G (d > 2). Motivated by the gap between these bounds (d + 2 and 2d — 1), it is
natural to consider the following problem: What is the exact coefficient of the list packing number
for d-trees in terms of d? Moreover, focusing on improving the upper bound, we may also consider
the following problem: How many distinct L-colorings can be found in d-trees with (2d — 2)-list
assignment?

References

[1] S. Cambie, W. Cames van Batenburg, E. Davis, R. J. Kang, Packing list-colorings, Random
Struct. Alg. 64 (2024), 62-93.



Problem 13B-2

On the minimum spectral radius in an n-vertex K, -saturated graph
Proposed by Suil O, The State University of New York, Korea

Given two graphs G and H, a graph G is H-saturated if G does not contain H as a subgraph,
but for any e € E(G), G + e contains H as a subgraph; the spectral saturation number of H, written
sat,(n, H), is the minimum value of p(G) in an n-vertex H-saturated graph G.

In 2020, Kim, Kim, Kostochka, and O [2] conjectured a lower bound for the spectral radius in an

n-vertex K,,i-saturated graph.

Conjecture 1. ([2]) Forn > r + 1 and v > 3, we have sat,(n, K,+1) = p(Sn), where Sy, =
Kr—l \% Kn—r+1-

Kim, Kim, Kostochka, and O [2] proved a lower bound for sat,(n, K,41) and determined sat,(n, K3).
In 2023, Kim, Kostochka, O, Shi, and Wang determined sat(n, K4). Very recently, Ai, Liu, O, and
Zhang [1] determined sat,(n, K5) and sat,(n,tPs) for a positive integer. Wang and Hou also proved
sat,(n, K5) as well as sat,(n, Kg).

Possible Tool

If we can prove the following conjecture, then Conjecture 1 can be settled down.

Conjecture 2. (O) If G is an n-vertex K,yi-saturated graph, then for each vertex v € V(G), we
have

> dw) = (r—2)dw) + (r—1)(n—r+1).
Conjecture 2 is true for r = 3,4,5 and was used to prove Conjecture 1 for r = 3,4, 5.

References

[1] J. Ai, P. Liu, S. O, and J. Zhang, The Minimum Spectral Radius of ¢ Ps- or K5-Saturated Graphs
via the Number of 2-Walks Electronic J. Combin. 32 (2025), P1.30.

[2] J. Kim, S. Kim, A.V. Kostochka, and S. O, The minimum spectral radius of K, i-saturated
graphs , Discrete Math. 343(2020), 112068.

[3] J. Kim, A.V. Kostochka, S. O, Y. Shi, and Z. Wang, A sharp lower bound for the spectral radius
in K4-saturated graphs, Discrete Math. 346(2023), 113231.

[4] D. Wang and Y. Hou, The minimum spectral radius for K, i-saturated graphs with r = 4,5,
Discrete Math. 347(2024), 114110.



Problem 13B-3

Extremal graphs avoiding cycles of length / modulo k&
Proposed by Boram Park, Seoul National University

For two integers k and ¢, an (¢ mod k)-cycle or (¢ mod k)-path means a cycle or path of length
m such that m = ¢ (mod k). Burr and Erdés [7] conjectured that if an n-vertex graph does not
contain an (¢ mod k)-cycle, where kZ + ¢ contains an even number, then it has at most a linear
number of edges in terms of n. This conjecture was later confirmed by Bollobés [3], whose result
naturally led to the following question: What is the smallest constant ¢y j, where kZ + ¢ contains an
even number, such that every n-vertex graph with ¢, ;n edges contains an (¢ mod k)-cycle? Sudakov
and Verstraéte [11] showed that for 3 < ¢ < k, the value of ¢y}, is proportional to the maximum
average degree of a k-vertex graph without cycles of length £. This determines ¢ ; up to an absolute
constant. The exact value of ¢y, is known only for a few specific values of £ and k.

o It is well known that cyo = %
e Chen and Saito [4] proved that ¢g3 = 2 and the extremal graphs are Ks ,,_o.

e Bai, Li, Pan and Zhang [2] proved that ¢;3 = %, and one vertex identifications of Petersen
graphs are extremal graphs.

e Dean, Kaneko, Ota and Toft [6], as well as Saito [10], showed that cy3 = 3, with extremal
graphs being K3 ,_3.

e Gao, Li, Ma and Xie [8] proved that an n-vertex graph with at least @ edges contains two

consecutive even cycles unless 4 | (n — 1) and every block is isomorphic to K5. This result not
only shows that cp 4 = g

e In [9], Gyéri, Li, Salia, Tompkins, Varga and Zhu determined that cp4 = %.
e Most Recently in [1], Bai, Grzesik, Li, Prorok showed that cq = k — 1 for all odd integer k.
Problem 1. What is cg ) in general when kZ + £ contains an even integer?

We can ask the same question when G has a certain extra condition, such as 2-connectivity.
See [5].

Problem 2. On the class of 2-connected graphs, what is cpj, in general when kZ + { contains an
even integer?

References
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Problem 13B-4

The degree of asymmetry of graphs and tournaments
Proposed by Shohei Satake, Kumamoto University

In [3], Erdés and Rényi investigated the degree of asymmetry of a graph G, namely,
A(G) = min{|S\ 1S C (V;G)) s.t. [Aut(GAS)| > 1}

where GAS is a graph on V(G) with edge set E(G)AS, and Aut denotes the full automorphism
group. They proved that random graph G(n) := G(n, 1/2) satisfies

A(G(n)) > g —O(y/nlogn)

w.h.p. For an integer n > 1, let A(n) := max{A(G) : G is an n-vertex graph}. They also showed
that

n—1
Ay <™
implying that almost all graphs are “extremely” asymmetric. These results have affected many works
in extremal, probabilistic and algebraic combinatorics, as well as in theoretical computer science, see
e.g. [1, 2, 4,5, 7] and references therein.
In [6], we extend the notion of degree of asymmetry to tournaments (i.e. oriented complete
graphs). For a tournament 7', let

B(T) :=min{|S| : S C V(T) x V(T) s.t. S is inverse-closed and |Aut(T'AS)| > 1}.

where S C V(T')xV(T') is said to be inverse-closed if (u,v) € S implies (v,u) € S, and TAS is defined
in a manner similar to the graph case. Let B(n) := max{B(T') : T is an n-vertex tournament}. We
proved that random tournament 7 (n) (sampled from the set of all n-vertex tournaments uniformly
at random) satisfies

B(T(n) > 2 — 0(y/nlogn)

w.h.p., while we have

-2
Bn) < =2 4+ o(1)
We have the following open problems.
Problem 1. Is it true that
n 3n
AG() = 5 ~0(), B(T(m) =" —0(1)

hold w.h.p.?

Problem 2. Provide explicit constructions for an n-vertex graph G and an n-vertex tournament T
such that

—0(1), B =""_00).

AG) = :

n
2
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Problem 13B-5

Decomposing hypergraphs into Hamiltonian cycles
Proposed by Bjarne Schiilke, IBS ECOPRO

For 1 < ¢ < k — 1, the Dirac constant hék) is defined as the infimum « € [0, 1] such that for
n—~{

every £ > 0 and sufficiently large n, every n-vertex k-graph H with &,(H) > (a +¢)(}_,) contains
a Hamiltonian cycle. Let reg,(H) be the largest integer r divisible by k such that H contains a

spanning subgraph in which every vertex belongs to exactly r edges. Further, let hl(zk)dec be the
infimum « € [0,1] such that for every ¢ > 0 and sufficiently large n, every n-vertex k-graph H
with 0¢(H) > (a+e) (Z:f) contains (1—e¢)reg;, /k edge-disjoint Hamiltonian cycles. Lastly, define hék)ex
as the infimum « € [0, 1] such that for every € > 0 and sufficiently large n, every n-vertex k-graph H

with §;(H) > (a +¢) (Z:ﬁ) can be decomposed into Hamiltonian cycles. Joos, Kithn, and Schiilke

showed that for all £ > 2, h,(f_)ilec = h,(f_)l. Piga and Sanhueza-Matamala showed that h§3) # hg?’)ex.
Determine all 1 < ¢ < k — 1 such that

hgk)dec _ hgk) ?é hék)ex.
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Problem 13B-6

Ore-type condition for homeomorphically irreducible spanning trees
Proposed by Shoichi Tsuchiya, Senshu University

Let G be a connected graph of order n. A spanning tree T of G is called a homeomorphically
irreducible spanning tree (a HIST) if T has no vertices of degree 2. In [1], it was proved that if
§(G) > 44/2n, then G has a HIST (and this minimum degree was refined in [2]). For the degree-sum
condition of nonadjacent vertices (o02(G)), the following theorems were proved.

Theorem 1 (Ito and Tsuchiya [4]). Let G be a connected graph of order n > 8. If 02(G) > n —1,
then G has a HIST.

Theorem 2 (Furuya, Saito and Tsuchiya [2]). Let G be a connected graph of order n > 10, and
suppose that o2(G) > n — 2. Then G has a HIST if and only if G is not isomorphic to D,,, where
D,, is the graph obtained from K,_o and Ko by adding one edge.

Theorem 3 (Furuya and Tsuchiya [3]). Let G be a connected graph of order n > 1091, and suppose

that 02(G) > "TH Then G has a HIST if and only if G has no blocking set, where a blocking set is

a cut set consisting of vertices of degree 2.

Since there exists D,,, the bound of Theorem 2 is sharp. However, if we add some properties (as
Theorems 2 and 3), we may refine this bounds.

Problem 4. Are there a property P and a number ¢ > 0 such that if a connected graph G of order
n (n is sufficiently large) satisfies P and o2(G) > c\/n, then G has a HIST?

References

[1] M.O. Albertson, D.M. Berman, J.P. Hutchinson and C. Thomassen, Graphs with homeomor-
phically irreducible spanning trees, J. Graph Theory 14 (1990), 247-258.
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Problem 13C-1

Strong blocking sets
Proposed by Chong Shangguan, Shandong University (Qingdao)

A set of vectors U C F f; forms a strong s-blocking set if the following two conditions hold: (1)
these vectors are pairwise linearly independent (i.e., they are projective points in PG(k — 1,q)); (2)
for every subspace V' C Fy of codimension s, U NV spans V.

Strong blocking set is an important concept in finite geometry and it is equivalent to minimal
codes in coding theory, which also has many applications.

Let f(k,q,s) denote the minimum size of a strong s-blocking set in F’q“. It is known that

s+1 _ — s s+1 s —5—
GRS T P P 2 T EL]

The lower bound is proved by the polynomial method and the upper bound is attained by a random-
ized construction. For s = 1, a better lower bound f(k,q,1) > ¢4(¢+1)(k —1) with ¢, > 1 is known.
For s > 2, there is a gap of factor s + 1 between the lower and upper bounds.

Question 1. Close or narrow the gap.

The above upper bound is probabilistic. Explicit constructions are also very interesting. Using
expander graphs and algebraic geometry codes, Alon, Bishnoi, Das, and Neri provided explicit con-
structions for strong blocking sets. Generalizing their constructions, Bishnoi and Tomon provided
explicit constructions for strong s-blocking sets. These constructions are tight in the order of ¢ and
k, but with hugh constant as a function of s, i.e., 20(s? logs) o5

Question 2. Improve the constant in the explicit construction.

Alon et al made use of the integrity £(G) of a graph G: this is the least integer such that for every
S C V(G), one can find in G — S a connected component of size £(G) — |S|. Alon et al used the fact
that any (n,d, \)-graph G has large integrity

0G) > j;i (@),

Question 3. What is the integrity of a 3-graph? Define and use it to improve Bishnoi and Tomon’s
construction.
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Problem 13C-2

Graphs without cycles of length 0 modulo an even integer
Proposed by Yandong Bai, Northwestern Polytechnical University

An (¢ mod k)-cycle refers to a cycle whose length is congruent to £ modulo k. Denote by Cymod &
the set of all (¢ mod k)-cycles. Burr and Erd6s [6] conjectured in 1976 that ex(n,Csmod k) = ©(n)
for k > ¢ > 0 when kZ + ¢ contains an even integer. Bollobds [3] confirmed the above conjecture
and demonstrated that ex(n,Cpmod k) < ((k + 1)¥ — 1)n/4k. Erdds then proposed the problem of
determining the smallest constant ¢, such that every n-vertex graph with at least ¢y - n edges
contains an (¢ mod k)-cycle.

It is not difficult to see that if G contains no (0 mod 2)-cycles then e(G) < 3(n — 1)/2 and, for
2|(n — 1), the equality holds if and only if each block of G is a triangle. This implies that co2 = 3/2.
The first non-trivial result on ¢, was obtained by Chen and Saito [4], who showed that cp3 = 2.
Recently, Gy6ri et al. [8] showed that co4 = 19/12. Bai et al. [1] showed that ¢y = k—1 for odd k.
Also, Dean et al. [5] and, independently, Saito [9] showed that ¢z 3 = 3. Gao et al. [7] showed that
c24 = 5/2. Bai et al. [2] showed that ¢; 3 = 5/3.

Bai et al. [1] conjecture that co = (k —1)/2 for even k > 6.

Problem 1. Whether c ), = (k—1)/2 for even k > 6.
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Problem 13C-3

Total weight choosability of graphs
Proposed by Kecai Deng, Huaqiao University

For a graph G = (V, E), a mapping w : VU E — R is called a proper total weighting, if for each
w € B, w(u) + > 5, we) #w) + .5, w(e).

We say G is (k,k')-choosable if: for any list assignment L that assigns to each vertex v a set
L(v) of k real numbers and to each edge e a set L(e) of k' real numbers, there exists a proper total
weighting w such that w(z) € L(z) for each z € VU E.

Conjecture 1. (Wong and Zhu [4], 2011) Every nice graph is (1,3)-choosable.

Known results on Conjecture 1:

1. Every nice graph is (1, 5)-choosable. (Zhu [6], 2022)
2. Every nice graph admits a proper {1, 2, 3}-edge weighting. (Keusch [6], 2024)

Conjecture 2. (Wong and Zhu [4] 2011, Przybylo and Wozniak [3] 2011) Ewvery graph is (2,2)-
choosable.

Known results on Conjecture 2:
1. Every graph is (2, 3)-choosable. (Wong and Zhu [5], 2016)

2. Every graph is uniform-span (2, 2)-choosable. (Deng and Qiu [1], 2025+)

(Here, we say a graph G is uniform-span (2, 2)-choosable if: for any list assignment L that assigns
to each z € VUE aset L(z) = {a.,b.} (a, # b.) and satisfies |a; — b;| = |ay — by| for arbitrary
x,y € VU E, there exists a proper total weighting w such that w(z) € L(z) for each z € VUE.)
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Problem 13C-4

Properly colored Hamiltonian cycles in edge-colored graph
Proposed by Laihao Ding, Central China Normal University

Given an edge-colored graph G, we say that G is k-bounded if for any v € V(G) each color appears
on at most k incident edges of v. Bollobds and Erdés [1] conjectured the following.

Conjecture 1 ([1]). Every n-vertex T-bounded complete graph contains a properly edge-colored
Hamiltonian cycle.

In 2016, Lo [2] resolved the conjecture asymptotically.

Theorem 2 ([2]). For any ¢ > 0, there is an integer ng such that if n > ng, then every n-vertex
(% — 5)-b0unded complete graph contains a properly edge-colored Hamiltonian cycle.

Recently, Montgomery announced that together with Milojevié¢, Pokrovskiy and Sudakov, they
solved the conjecture for large n.

Problem 3. Is it true that every @-bounded Dirac graph G contains a properly edge-colored Hamil-

tonian cycle?
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Problem 13C-5

The multiplicity of spectral radius of uniform hypergraphs
Proposed by Yi-Zheng Fan, Anhui University

Let A = (ai,.,) be a tensor of order k and dimension n with entries a;, ;, € C, where 1 €
[n] :={1,...,n} and j € [k]. Given a vector x € C", Az*~1 € C", which is defined by (Az*F~1); =
Ziz,...,ike[n} Qiig..ix Tiy -+ Tiy, § € [n]. For some A € C, if the polynomial system (A\Z — A)zF~1 =0 has
a nontrivial solution x, then A is an eigenvalue of A and x is an eigenvector of A associated with A,
where 7 is the identity tensor. The characteristic polynomial ¢ 4(\) of A is defined as the resultant
of the polynomials (A\Z — A)z*~!, and X is an eigenvalue of A if and only if it is a root of ¢ 4(A). The
algebraic multiplicity of X is defined as the multiplicity of A as a root of ¢ 4(\), denoted by am(\).
The spectral radius of A is defined to be the largest modulus of the eigenvalues of .A.

The eigenvariety of A associated with an eigenvalue A of A is defined to be the affine variety
W(A) = {z € C* : AzF~1 = \zl*=1}. The geometric multiplicity of X is defined as the dimension
of V\(A), which is the maximum dimension of the irreducible components of V)(A), denoted by
gm(\). The projective eigenvariety of A associated with A is defined to be the projective variety
Va(A) = {z € PP 1 AzF~1 = AglF~1} in the complex projective spaces P"~! of dimension n — 1.
In 2016 Hu and Ye [3] proposed the following conjecture and showed that it is true in several cases.

Conjecture 1 ([3] Hu-Ye’s conjecture). Suppose that a k-th order n-dimensional tensor A has an

eigenvalue A with eigenvariety Vy(A) possessing k irreducible components Vi, ..., V... Then
am(X) > Y dim(V;)(k — 1)Tm VD, (1)
i=1

In particular,

am(\) > gm(\)(k — 1)8mN 1 (2)

Cooper and Fickes [1] confirmed (1) in Hu-Ye’s conjecture for the zero eigenvalue of P, Zheng
[4] confirmed (2) in Hu-Ye’s conjecture for all nonzero eigenvalues of a hyperpath P¥ | and all nonzero
eigenvalues of a hyperstar S,(Lk). We have proved the following result.

Theorem 2 ([2]). If H is one of the following hypergraphs: k-uniform hypertrees, k-th power of con-
nected simple graphs, complete 3-uniform hypergraphs on at least 4 vertices, then for any eigenvalue
A of the adjacency tensor A(H) of H with modulus equal to the spectral radius,

am(A) = [VA(A(H))].
Consequently, (1) in Hu-Ye’s conjecture holds equality for the eigenvalue A of A(H).
We pose the following conjecture.

Conjecture 3. Let H be a connected k-uniform hypergraph with spectral radius p. Then

am(p) = |V,(A(H))|-
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Problem 13C-6

Kohayakawa—INagle-Ro6dl-Schacht Conjecture for Chordal Graphs

Proposed by Ruonan Li, Northwestern Polytechnical University
Definition 1 (Locally dense graph). A graph G is (e,p)-dense if for every U C V(G) with |U| >
e|V(Q)|, there holds 2|E(G[U])| > p|U|?.

Conjecture 2 (KNRS Conjecture [1], JCTB, 2010)). Let H be a graph. Then for every p,n € (0,1),
there exists € = e(p,n, H) and ny = no(p,n, H) such that if G is (,p)-dense with |V (G)| = n > ng,
then

hom(H, G) > (1 — n)p BV D

Joonkyung Lee [2] asked whether the KNRS conjecture holds for chordal graphs.
Question 3. The conjecture holds for cliques. Can we prove it for chordal graphs? Specifically for

each chordal graph with cligue number 3¢
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Problem 14A-1

Some spectral extremal problems on books
Proposed by Yongtao Li, Tsinghua University

The famous Mantel theorem asserts that every n-vertex graph with at least |n?/4] + 1 edges
contains a triangle. The bound is the best possible when we take G as a balanced complete bipartite
graph T;, 2. A book of size t is a graph that consists of ¢ triangles sharing a common edge. Edwards
(unpublished), and independently by Khadziivanov and Nikiforov (unavailable) proved that if G is
an n-vertex graph with e(G) > |n?/4] + 1, then G contains a book of size greater than n/6, and this
bound is tight. This solves a conjecture of Erdds; see [1, 2] for two alternative proofs.

The adjacency matriz of an n-vertex graph G is defined as A(G) = [aij]ijla where a;j—; if
ij € E(G), and a;; = 0 otherwise. The spectral radius \(G) of G is defined as the maximum modulus
of eigenvalues of A(G). By the Perron-Frobenius theorem, we know that A(G) is actually a largest
eigenvalue of A(G). Zhai and Lin [3, Problem 1.2] proposed the following interesting problem:

Problem 1. For arbitrary positive integer n, if G is a graph on n vertices with \(G) > N(Ty2), is
it true that G' contains a book of size greater than % ?

The above spectral problem is stronger than the aforementioned edge version, since e(G) > e(T5, 2)

implies A(G) > A(Ty,2). Zhai and Lin [3] proved that such a graph G has a book of size g%.

An old result of Nosal says that if G is an m-edge graph with \(G) > \/m, then G contains a
triangle. Recently, Li, Liu and Zhang [4, Problem 6.1] studied the spectral extremal problem for
graphs with given number of edges, and proposed the following problem.

Problem 2. Does every m-edge graph G with A\(G) > v/m contains a book of size %\/RQ

For related spectral results on counting substructures, we refer to [5, 6].
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Problem 14A-2

A problem of Erdés on r(Cy, K,,)
Proposed by Qizhong Lin, Fuzhou University

It is known that there exist constants c1,co > 0 such that for all sufficiently large n,

cl( n )3/2§7’(C4,Kn)SC2< n )2, 3)

logn logn

where the lower bound is proved by probabilistic methods [4], and the upper bound is due to Sze-
merédi (unpublished, see [2]).

Conjecture 1 (Erd6s [1]). there exists a constant € > 0 such that
r(Cy, Kpn) = o(n*°).

We give a short proof the upper bound of (3) using the following theorem. For any vertex v of
G, let G, be the subgraph induced by the neighborhood of v.

Theorem 2 (Li and Rousseau [3]). Let a > 0 be an integer. Let G be a graph with N vertices and
average degree d. For any vertex v of G, if G, has maximum degree at most a, then

log(d/(a+1)) — 1.

a(G) 2 Nfan(d) = N2EEE

Proof of the upper bound of (3). Let G be a graph of order N = r(Cy, K,;) — 1 which contains
no Cy and o(G) < n. For any vertex v of GG, the maximum degree of G, is at most 1 since G' does
not contain Cy. Moreover, since ex(N,Cy) < (1/2 + 0(1))N3/2, we have that the average degree of
G is at most (1 + o(1))N'/2. We apply Theorem 2 with a = 1 to obtain that

log N'1/2

n>a(G) > (1- 0(1))NW

1
> §N1/2logN.

The upper bound follows. O
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Problem 14A-3

Extremal Spectral Radius Problem

Proposed by Zhenzhen Lou, University of Shanghai for Sceince and Technology

Problem 1 (Brualdi, Solheid, [1]). Given a set G of graphs, find min{p(G) : G € G} and max{p(Q) :
G € G}, and characterize the graphs which achieve the minimum or mazimum value.

In general, characterizing the graphs of the minimum spectral radius is still an open problem
[2]. Particularly, Stevanovi¢ [2] pointed out that determining the graph with the minimum spectral
radius among connected graph with independence number « appears to be a tough problem.

Problem 2 ([2]). What is the minimal spectral radii of graphs with given independence number o ?

Define
pp(n) := min{p(I") ‘ I' is a graph with n vertices and diameter D}.

Conjecture 3 ([3]). Let D > 1. Then
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Problem 14A-4

The redundant subgraphs in the k-connected graphs
Proposed by Yingzhi Tian, Xinjiang University

For a k-connected G, a vertex subset or a subgraph R of G is said to be redundant if G — R is
still k-connected. In 1972, Chartrand, Kaigars and Lick [1] proved that there is a redundant vertex
in a k-connected graph with minimum degree at least L%J In 2008, Fujita and Kawarabayashi
[2] conjectured that every k-connected graph with §(G) > L%J + fr(m) — 1 contains a connected
subgraph G’ of order m such that K(G—V (G’)) > k, where fi(m) is nonnegative. Mader [4] confirmed
this conjecture and proved that fi(m) = m. In addition, the connected subgraph G’ can be chosen
as a path. Meanwhile, Mader conjectured that the result would hold even if the path is replaced by
any tree with the same order.

Conjecture 1. (Mader [4]) For any tree T with order m, every k-connected graph G with 6(G) >
|3%] +m — 1 contains a tree T' = T such that k(G — V(T")) > k.

When G is a bipartite graph, Luo, Tian and Wu [3] showed that the minimum degree condition
in the conjecture above can be relaxed to k 4+ m and proposed the bipartite version conjecture.

Conjecture 2. ([3]) For any tree T with bipartition X and Y, every k-connected bipartite graph
G with minimum degree at least k + t, where t = maz{|X|,|Y|}, contains a tree T" = T such that
k(G -V (T") > k.

For more results, see the survey paper [5].
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Problem 14A-5

Intersecting k-graphs with covering number £k
Proposed by Jian Wang, Taiyuan University of Technology

Let [n] denote the standard set {1,2,...,n} and let ([Z]) denote the family of all k-element subsets
of [n]. A subfamily of ([Z]) is called a k-graph. We say that F C ([Z}) is intersecting if F'NF’ # () for
all F,F' € F.

One of the most important results in extremal set theory is the Erdos-Ko-Rado Theorem.
Erdés-Ko-Rado Theorem ([3]). Let n > 2k and suppose that F C ([Z]) is intersecting then

#1= (3 2)): (@)

For F C ([Z]), define the covering number 7(F) as the minimum size of T that satisfies FNT # ()
for all F' € F. In their seminal paper [4], Erd6s and Lovasz (among other things) investigated

m(k) = max{]f: F C <[Z]> is intersecting, n is arbitrarily large, 7(F) = k} .

Erdds-Lovasz Theorem ([4]).
(e — k1] < m(k) < K. (5)

In [8] Lovész conjectured that m(k) equals the lower bound of (5). However it was disproved in
[6] for k£ = 4. The constructions in [7] show that

m(k) > (14 o(1) (’;)k (6)

The upper bound part of (5) was improved sequentially in [9], [2], [1], [5], [10].

Theorem 1 ([10]).

_0.5+0(1)

m(k) < e k", (7)
Conjecture 2 (Frankl). There exists an € > 0 such that for n > ng(k) and k > ko,

m(k) < ((1—e)k)*.
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Problem 14A-6

Graham’s GCD conjecture and its connections with
Farey sequence and graph theory

Proposed by Liuquan Wang, Wuhan University

In 1970, Graham [3] proposed the following conjecture.

Conjecture 1. Let ai,ao,- - ,a, be distinct positive integers, we have

Balasubramanian and Soundararajan [1] confirmed this conjecture based on deep analytical meth-
ods.

Given a positive integer n, the Farey sequence F), is the set of rational numbers a/b with 0 < a <
b <n and (a,b) = 1. For any set S of real numbers, we define

Q(S):{g:x,yES,mgyandy#O}.

In particular, if S = {0} then we agree that Q(S) = {0}. We [4] find the following theorem which is
equivalent to Conjecture 1.

Theorem 2. Suppose S C F,, if Q(S) C F,, then S has at most n + 1 elements.

Problem 3. Can we prove Theorem 2 directly and thus providing new proofs for Graham’s conjec-
tures?

Let k be a positive integer. Bosek, Debski, Grytczuk, Sokdl, Sleszyﬁska—Nowak and Zelazny
[2] defined auxiliary graphs reflecting in some sense the arithmetic proximity of numbers. Define
arithmetic proximity between two integers a and b as

AP(a,b) := max{«#tb), @L,bb)}

Two numbers are arithmetically close if the above value is relatively small.

Let k£ be a fixed positive integer. Define an infinite graph By on the set N by joining a to b if and
only if their arithmetic proximity is at most k. These graphs are called as arithmetic graphs. Bosek
et al. [2] considered the following

Problem 4. What is the chromatic number (denoted as x(By)) of By ?

Clearly the numbers 1,..., &k form a clique, so there is no hope for coloring that would use less
than & colors. Hence x(By) > k. The following conjecture is stronger than Conjecture 1.

Conjecture 5 (Bosek et al. [2]). Every arithmetic graph By, satisfies x(By) = k.

In this talk, we will present some facts about Conjecture 5 and some interesting applications [4]
of Graham’s conjecture to Farey sequences.
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Problem 14B-1

Packing colorings of graphs
Proposed by Yan Wang, Shanghai Jiao Tong University

An i-packing in a graph G is a set of vertices whose pairwise vertex distance is at least i + 1. Let
S = (s1, 82, ..., Sk) be a non-decreasing sequence of positive integers. A packing S-coloring of a graph
G is a partition of V(@) into sets Vi, ..., V. such that each V; is an s;-packing.

Gastineau and Togni [1] proved that every subcubic graph is packing (12, 23)-colorable. Further-
more, they asked

Problem 1 (Gastineau and Togni [1]). Is it true that every subcubic graph except the Petersen graph
is packing (1,1,2,3)-colorable?

This question still remains open. Very recently, Liu, Zhang and Zhang [3] showed every subcubic
graph is packing (1, 1, 2, 2, 3)-colorable and conjectured that every subcubic graph except the Petersen
graph is packing (12, 2%)-colorable.

For packing (1,2")-coloring, Tarhini and Togni [4] proved that every cubic Halin graph is packing
(1,25)-colorable. Gastineau and Togni [1] proved every subcubic graph is packing (1,2%)-colorable.
Liu and Wang [2] showed that every subcubic planar graph is packing (1,2%)-colorable. Gastineau
and Togni [1] asked the following question after performing a computer search on graphs with small
order.

Problem 2 (Gastineau and Togni [1]). Is it true that every subcubic graph except the Petersen graph

is packing (1,25)-colorable?
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Problem 14B-2

The frustration index of a signed graph
Proposed by Zhouningxin Wang, Nankai University

A signed graph (G, o) consists of an underlying graph G together with a signature o : E(G) —
{+1,—-1}. Let E 5 denote the set of negative edges in (G,0). The operation of switching at a
vertex is to multiply the signs of all incident edges by —1. Two signatures ¢ and 7 on a graph G
are said to be switching-equivalent if one can be obtained from the other by a sequence of switching
operations at some vertices. The frustration index of a signed graph (G, o), denoted by F(G, o), is
defined as

F(G,o) = min{|E(B7g)| | o' is switching-equivalent to o}.

Equivalently, the frustration index is the minimum number of edges that need to be removed so that
the resulting signed graph can be switched into an all-positive one; this quantity is also known as
the minimum negative-cycle covering number.

One nice result obtained in [1] is the following: If a signed graph is odd- K4-minor-free or Eulerian
odd- K5-minor-free, then its frustration index equals to the maximum number of edge disjoint negative
cycles in it.

Problem 1. Charaterize the class of signed graphs (G, o) such that its frustration index is equal to
to the mazximum number of edge disjoint negative cycles.

Another interesting class of signed graphs is that of special signed hypercubes. Let H, denote
the n-dimensional hypercube, and let o* : E(H,,) — {+1, —1} be a signature such that every 4-cycle
is negative. A classical question posed by P. Erdds asks for the minimum number f(n) of edges that
must be removed from H,, in order to make the resulting graph Cy-free. The following question is in
a similar spirit.

Problem 2. Determine F(Hy,c*).

gk _m
It is known that (n — /n)-2"2 < F(H,,o*) < 272 <n — W) where 4% < n < 4k+1

and n +m =1 (mod 3) with m € {0,1,2}. Out of personal curiosity, one may ask whether f(n) =
F(Hp,0%).
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Problem 14B-3

Subdivisions with length constraints
Proposed by Donglei Yang, Shandong University

For a graph H, a subdivision of H, denoted by T H , is a graph obtained by replacing edges of H by
internally vertex-disjoint paths. As a fundamental question, the extremal problems on H-subdivision
have been extensively studied, starting from a result of Mader from 1967. He showed that for every
k € N, there exists (finite) f(k) such that every graph G with average degree at least f(k) contains
a TK},. Mader furthermore conjectured that one can take f(k) = O(k?). This conjecture was finally
resolved in the 90s by Bollobas and Thomason and independently by Komlés and Szemerédi.

Recent trends have been focusing on the existence of subdivisions with length constraints. An
old question of Erdds asks for every € > 0, whether there exists § > 0 such that every graph with n
vertices and average degree at least en contains a K; /-subdivision where each edge is subdivided

exactly once. Alon, Krivelevich and Sudakov affirmatively answered the question with § = 5%, and
this result was improved to 6 = & by Fox and Sudakov. In this direction, Dvoidk asked (in his
thesis) whether one can strengthen the above-mentioned result of Bollobds—Thomason and Komlds—
Szemerédi for polynomially dense graphs.

Conjecture 1 (Dvotdk). For given o > 0, every graph G with d(G) = d > n® contains a TKQ(ﬂ),
where each edge is subdivided O, (1) times.

A very recent result of Tomon[1] implies
(a) an {-subdivision of Ky with £ = O(1logl) and t = n®@),
(b) an (-subdivision of K; with £ =O(1logl) and t = %.

Tomon conjectured that £ = O(Xlog 1) in (a) can be replaced by ¢ = O(1).
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Problem 14B-4

Open problems of divisible subdivisions
Proposed by Fan Yang, Shandong University

A Ky-minor is defined as a graph G whose vertex set is partitioned into f disjoint non-empty
sets X1,..., Xy, such that for every i € [f], the induced subgraph G[X;] is connected, and for every
i # j € [f], there exists at least one edge in G with endpoints in X; and X;. Given a graph H,
a subdivision of H is any graph H’ obtained from H by replacing its edges with internally vertex-
disjoint paths connecting the original endpoints of the edges in H. The paths in H' replacing the
edges of H are called subdivision paths. A subdivision H' of H is called g-divisible if all its subdivision
paths are of length divisible by gq.

Theorem 1 ([1]). For every graph H with A(G) < 3 and every integer g > 2 there ezists a (smallest)
integer f = f(H,q) > 1 such that every K¢-minor contains a q-divisible subdivision of H as a
subgraph.

Remark. Through the proof of Theorem 1, it gives an upper bound on f(H, g) which is of magnitude
(¢*n)?’", where n = |V (H)|. However, the best lower bound on f(H,q) for subcubic graphs H
on n vertices and m edges is m(q — 1) + n, obtained by considering the complete graph of order
m(q — 1) +n — 1 (which is too small to host a g-divisible subdivision of H).

Alon and Krivelevich posed the problem of improving their superexponential bound on f(H,q).

Theorem 2 ([2]). Let H be an n-vertex graph with e(H) = m and A(H) < 3. Then, for every
integer q > 2, it holds that

m(qg—1)+n < f(H,q) < Tmq+ 8n + 14q,
and hence f(H,q) = ©(mq+n).

Problem 3 ([2]). Given q € N and a subcubic graph H with n vertices and m edges, is it true for
f =m(q—1) +n that every subdivision of Ky contains a q-divisible H -subdivision?

Problem 3 is true when ¢ = 2 and H = Kjy.
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Problem 14B-5

Expander problem

Proposed by Tao Zhang, Xidian University

Let A C Fy, and define
(A-A)(A—-A) ={(a—b)(c—d):a,bec,de A}.

Let a € [0,1] denote the smallest exponent such that, for any A C F, with |A| > C¢® (for sufficiently
large C'), we have

(A-A)(A—-A)=F,.
It follows from [1, 2] that

IA
o
IN

Wl o
e~ w

Conjecture 1. a = %.
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Problem 14B-6

List colouring of Eulerian triangulations
Proposed by Xuding Zhu, Zhejiang Normal University

An Eulerian triangulation of the plane is a triangulation of the plane in which each vertex has
even degree. It is known that Eulerian triangulations of the plane are 3-colourable. Mirzakhani
constructed an Eulerian triangulation of the plane which is not 4-choosable.

Assume X\ = {ki,ko,...,kq} is a multiset of positive integers. Let ky = > ¢ k. So Ais a
partition of the integer ky. A A-assignment of a graph G is a ky-assignment L such that the set of
colours

C = Upev(e)L(v)

can be partitioned into ¢ subsets,
C:CluCQU...UCq

and for each vertex v,

We say G is A-choosable if G is L-colourable for each A-assignment L.
Question 1. Is it true that every Eulerian triangulation G of the plane is {2,2}-choosable?

Question 2. Is it true that for any Fulerian triangulation G of the plane, for any 2-assignment L
of G, there is an L-colouring ¢ of G such that for each colour c, ¢~'(c) induces a bipartite graph?

A positive answer to Question 2 is a weakening of the following conjecture of Kundergen et al.

Conjecture 3. For any planar graph G, for any 2-assignment L of G, there is an L-colouring ¢ of
G such that for each colour ¢, $~1(c) induces a bipartite graph.

Conjecture 3 is stronger than the Four Colour Theorem.
The following is a strengthening of Question 2 as well as the well-known Barnette’s conjecture:

Question 4. Is it true that for any Eulerian triangulation G of the plane, for any 2-assignment L
of G, there is an L-colouring ¢ of G such that for each colour ¢, ¢~ '(c) induces a tree ?

Barnette’s conjecture is the non-list version of Question 4 (or all the lists consists of the same
two colours).
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