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1 Introduction

Boolean function analysis studies functions on the Boolean cube {−1, 1}n (or sometimes {0, 1}n) from a
spectral perspective. Often the functions themselves are also Boolean. It has applications in many areas,
such as combinatorics, social choice theory, probability theory, and theoretical computer science.

The starting point is the following observation:

Theorem 1. Every function f : {−1, 1}n → R can be written as a multilinear polynomial, in a unique way:

f =
∑
S⊆[n]

f̂(S)χS , where χS(x) =
∏
i∈S

xi.

Stated differently, the functions χS (called Fourier characters) constitute a basis of the space of all
functions from {−1, 1}n to R. In fact, more can be shown: the characters χS constitute an orthonormal
basis with respect to the inner product

⟨f, g⟩ = E
x∈{−1,1}n

[f(x)g(x)],

where the expectation is with respect to the uniform distribution.
Since there are 2n different characters, matching the dimension of the space of all real-valued functions

on {−1, 1}n, it suffices to show that different characters are orthogonal, and each has norm 1. The sec-
ond property follows immediately from the observation χS(x)χS(x) = 1. As for the first property, since
χS(x)χT (x) = χS△T (x), it suffices to show that E[χS ] = 0 whenever S ̸= ∅. Indeed,

E
x
[χS(x)] = E

x1,...,xn∈{−1,1}

[∏
i∈S

xi

]
=
∏
i∈S

E
xi∈{−1,1}

[xi] =
∏
i∈S

0 = 0.

Some terminology:

• The functions χS are called (Fourier) basis functions or (Fourier) characters.

• The numbers f̂(S) are called Fourier coefficients.

• The entire formula is the Fourier expansion.

• The degree of f is the degree of its Fourier expansion as a polynomial.

Since the Fourier characters are orthonormal, we can extract them by taking an inner product:

f̂(S) = ⟨f, χS⟩ = E
x
[f(x)χS(x)].

In particular, since χ∅ ≡ 1,
f̂(∅) = E

x
[f(x)].
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Another useful property is Parseval’s identity:

⟨f, g⟩ =
∑
S

f̂(S)ĝ(S).

In particular, taking f = g,

∥f∥2 =
∑
S

f̂(S)2,

where ∥f∥ is the L2 norm, that is, ∥f∥ =
√

⟨f, f⟩.

1.1 Linearity testing

A function f : {0, 1}n → {0, 1} is linear if it satisfies

f(x⊕ y) = f(x)⊕ f(y) for all x, y ∈ {0, 1}n.

If we think of {0, 1} as Z2, then this is the usual definition of linearity. It is easy to check that if f is linear
then f has the form

f(x) =
⊕
i∈S

xi

for some S ⊆ [n].
What can we say about f if it satisfies the following property (where x, y are drawn uniformly at random)?

Pr
x,y∼{0,1}n

[f(x⊕ y) = f(x)⊕ f(y)] ≥ 1− ϵ

The natural guess is that f has to be close to a truly linear function. This has a very short proof using
Fourier analysis.

First, let us switch from {0, 1} to {−1, 1}, using the mapping b 7→ (−1)b. Linearity is now the property

f(xy) = f(x)f(y) for all x, y ∈ {−1, 1}n.

The functions satisfying this property are the Fourier characters χS .
Suppose that a function f : {−1, 1}n → {−1, 1} satisfies

Pr
x,y∼{−1,1}n

[f(xy) = f(x)f(y)] ≥ 1− ϵ.

The first step is to convert the probability into an expectation:

E
x,y

[f(x)f(y)f(xy)] = Pr
x,y

[f(xy) = f(x)f(y)]·1+Pr
x,y

[f(xy) ̸= f(x)f(y)]·(−1) = 2 Pr
x,y

[f(xy) = f(x)f(y)]−1 ≥ 1−2ϵ.

Next, we substitute the Fourier expansion of f :

1− 2ϵ ≤ E
x,y

[f(x)f(y)f(xy)] = E
x,y

[(∑
S

f̂(S)χS(x)

)(∑
T

f̂(T )χT (y)

)(∑
R

f̂(R)χR(xy)

)]
.

Using linearity of expectation:

1− 2ϵ ≤
∑
S,T,R

f̂(S)f̂(T )f̂(R) E
x,y

[χS(x)χT (y)χR(xy)].

Since χR(xy) = χR(x)χR(y), we can rewrite this as

1− 2ϵ ≤
∑
S,T,R

f̂(S)f̂(T )f̂(R)E
x
[χS(x)χR(x)]E

y
[χT (y)χR(y)] =

∑
S,T,R

f̂(S)f̂(T )f̂(R)⟨χS , χR⟩⟨χT , χR⟩.
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If S ̸= R or T ̸= R then one of the inner products vanishes. Therefore the only summands which remain
correspond to S = T = R, leading to

1− 2ϵ ≤
∑
S

f̂(S)3.

Recall that
∑

S f̂(S)2 = ∥f∥2 = Ex[f(x)
2] = 1. Intuitively, the only way to reconcile this with∑

S f̂(S)3 ≳ 1 is if one of the Fourier coefficients is large. Mathematically,

1− 2ϵ ≤
∑
S

f̂(S)2 · f̂(S) ≤
∑
S

f̂(S)2 max
T

f̂(T ) = max
T

f̂(T )
∑
S

f̂(S)2 = max
T

f̂(T ).

Therefore there exists T such that f̂(T ) ≥ 1− 2ϵ. We would like to show that f agrees with χT on most
inputs. Indeed,

1− 2ϵ ≤ f̂(T ) = ⟨f, χT ⟩ = E
x
[f(x)χT (x)] = 2Pr

x
[f(x) = χT (x)]− 1,

and so
Pr
x
[f(x) = χT (x)] ≥ 1− ϵ.

Summarizing:

Theorem 2 (Linearity testing). Suppose that f : {−1, 1}n → {−1, 1} satisfies

Pr
x,y

[f(xy) = f(x)f(y)] ≥ 1− ϵ.

Then there exists a character χS such that

Pr
x
[f(x) = χS(x)] ≥ 1− ϵ.

This result has a property testing interpretation. Suppose that you are given a function f : {−1, 1}n →
{−1, 1} as a black-box. Someone claims that f is linear, and you would like to test this by probing f at
only a few (randomly chosen) places. Since you are only probing f at a few places, no testing procedure can
guarantee that f is linear, but you could hope that f is close to a linear function, in the sense that f agrees
with some linear function up to some small error set which is hard to hit using only a few applications of f .

Theorem 2 gives us exactly such a test: choose x, y at random, and verify that f(xy) = f(x)f(y). This
test has two properties:

Completeness If f is linear then the test always passes.

Soundness If the test passes w.p. 1− ϵ, then f is ϵ-close to a linear function, meaning that there is a linear
function g such that Prx[f(x) ̸= g(x)] ≤ ϵ.

A random function passes the test with probability 1/2. Hence we can think of the test as a pseudo-
randomness measure. In particular, if the probability that the test passes is far away from 1/2, then the
function is “far from random” — but in which sense?

Theorem 2 turns out to solve this question as well. Suppose first that

Pr
x,y

[f(xy) = f(x)f(y)] ≥ 1

2
+ δ.

Choosing ϵ = 1− (1/2 + δ) = 1/2− δ, the theorem implies that there exists a character χS such that

Pr
x
[f(x) = χS ] ≥

1

2
+ δ.

In other words, f correlates non-trivially with some character.
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When the probability is too small, that is

Pr
x,y

[f(xy) = f(x)f(y)] ≤ 1

2
− δ,

we apply the same analysis to g(x) = −f(x). The function g satisfies

Pr
x,y

[g(xy) = g(x)g(y)] = Pr
x,y

[f(xy) ̸= f(x)f(y)] ≥ 1

2
+ δ,

and so g correlates with some character χS , implying that

Pr
x
[f(x) = −χS(x)] = Pr

x
[g(x) = χS(x)] ≥

1

2
+ δ.

The only known proof of Theorem 2 in the regime ϵ ≈ 1/2 is using Fourier analysis (when ϵ is small,
self-correction also works).

2 Influences

There are n different people trying to toss a single coin together. Each of them chooses xi ∈ {−1, 1} uniformly
at random, and the result is aggregated using a function f : {−1, 1}n → {−1, 1}, which should be balanced:
Prx[f(x) = 1] = 1/2. How many people do I need to bribe in order to increase the probability of 1 to 2/3?
We would like to find a function f which maximizes this number.

A natural choice for f is the Majority function (assuming n is odd). The central limit theorem shows
that with probability 2/3, the number of 1 inputs is at least n/2 − C

√
n for some constant C > 0. This

means that if we know the input, it suffices to bribe O(
√
n) people. Now, this assumption is quite unrealistic.

However, we can still bias the voting by bribing O(
√
n) people using a similar argument: the central limit

theorem shows that with probability 2/3, the number of 1 inputs along the first n− 2C
√
n people is at least

(n− 2C
√
n)/2− C

√
n− 2C

√
n ≥ n/2− 2C

√
n. Bribing the remaining 2C

√
n people brings the total to at

least n/2.
Are there better functions? Ajtai and Linial constructed a function which requires bribing Ω( n

log2 n
)

people. We do not know whether this is optimal. However, Kahn, Kalai and Linial shows that it always
suffices to bribe O( n

logn ) people, using their celebrated KKL theorem.

The KKL theorem is usually stated in terms of influence. Given a function f : {−1, 1}n → {−1, 1}, the
i’th influence is

Infi[f ] = Pr
x
[f(x) ̸= f(x⊕i)],

where x⊕i is obtained from x by flipping the i’th coordinate. In other words, the i’th influence is the
probability that the i’th coordinate influences the output.

Theorem 3 (KKL). Every function f : {−1, 1}n → {−1, 1} has a variable whose influence is

Ω

(
log n

n
V[f ]

)
.

The variance has to make an appearance here: for example, if f is constant then all variables have zero
influence.

The KKL theorem has two implications:

• For any balanced f , a briber who sees x can change O( n
logn ) entries so that with probability 2/3 (over

x), the output is 1.

• For monotone balanced f , a briber can set O( n
logn ) fixed inputs to 1 in such a way that with probability

2/3, the output is 1.
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The proof is a repeated application of the KKL theorem, where each additional coordinate increases the
probability of 1 by roughly logn

n . Since we stop once Pr[f = 1] exceeds 2/3, the variance is always Ω(1).
While we don’t know whether n

logn is tight for the original problem, the KKL theorem itself is tight, for
the Tribes function:

Tribes(x) =
∨

i∈[n/m]

∧
j∈[m]

xi,j ,

for an appropriate choice of m. Here we momentarily switch back to 0, 1.
We think of each i as a tribe consisting of m people. The function equals 1 if there is a tribe which

“votes” 1 unanimously. This happens with probability

1− (1− 2−m)n/m ≈ 1− exp
(
− n

2mm

)
.

If n
2mm ≈ ln 2 then the function will be roughly balanced. This happens for m ≈ log2 n− log2 log2 n.
All variables have the same influence. The variable xi,j is influential if (i) all other tribes do not vote 1

unanimously, and (ii) the rest of tribe i votes 1. Event (i) happens with probability 1−(1−2−m)n/m−1 ≈ 1/2,
and event (ii) with probability 21−m = 2/2m = Θ(m/n) = Θ( logn

n ), since n
2mm ≈ ln 2.

2.1 Fourier formula

The influences have nice formulas in terms of the Fourier expansion. Define

Lif(x) =
f(x)− f(x⊕i)

2
.

This is a function from {−1, 1}n to {−1, 0, 1}, and

Infi[f ] = Pr[Lif ̸= 0] = ∥Lif∥2.

Substituting the Fourier expansion of f ,

Lif(x) =
∑
S

f̂(S)
χS(x)− χS(x

⊕i)

2
.

If i /∈ S then χS(x) = χS(x
⊕i). If i ∈ S then χS(x

⊕i) = −χS(x), and so

Lif(x) =
∑
i∈S

f̂(S)χS(x).

Consequently,

Infi[f ] = ∥Lif∥2 =
∑
i∈S

f̂(S)2.

2.2 Total influence

The sum of all influences is called the total influence:

Inf[f ] =

n∑
i=1

Infi[f ].

This is a very natural quantity: Inf[f ]
n is the probability that f(x) ̸= f(y), where (x, y) is a random edge

in the Boolean cube {−1, 1}n.
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In terms of the Fourier expansion, we have

Inf[f ] =

n∑
i=1

∑
i∈S

f̂(S)2 =
∑
S

|S|f̂(S)2.

Since
V[f ] = E[f2]− E[f ]2 =

∑
S

f̂(S)2 − f̂(∅)2 =
∑
S ̸=∅

f̂(S)2,

we can deduce the Poincaré inequality
V[f ] ≤ Inf[f ].

This implies that the random walk on the Boolean cube has a spectral gap of 1/n.

2.3 Proving the KKL theorem

We can now describe the proof of the KKL theorem, up to a certain lemma which will require the introduction
of one more tool.

Recall that the KKL theorem states that given a function f : {−1, 1}n → {−1, 1}, there is always a
variable whose influence is Ω( logn

n V[f ]). To simplify notation, from now on we assume that V[f ] = 1
(equivalently, f is balanced), but the general case is almost the same.

The KKL theorem is obvious if the total influence is large enough: if the total influence is at least c log n,
then there surely exists a variable whose influence is at least c logn

n . Therefore we can assume that the total
influence is small: at most c log n.

The total influence measures how much the Fourier expansion is concentrated on the low levels. Indeed,
recall that

∑
S f̂(S)2 = 1. This means that we can construct a probability distribution on subsets of [n] in

which the probability to sample S is f̂(S)2. The total influence is just E[|S|]. Markov’s inequality shows
that

Pr[|S| ≥ 2 Inf[S]] ≤ 1

2
,

and so ∑
|S|≥2 Inf[S]

f̂(S)2 ≤ 1

2
=⇒

∑
|S|≤2 Inf[S]

f̂(S)2 ≥ 1

2
.

How is this helpful? We can write

1

2
≤

∑
|S|≤2 Inf[S]

f̂(S)2 ≤
n∑

i=1

∑
|S|≤2 Inf[S]

i∈S

f̂(S)2 =

n∑
i=1

∥(Lif)
≤2 Inf[f ]∥2,

where g≤d =
∑
|S|≤d f̂(S)χS is the low-degree part of g. Here we used the fact that f̂(∅) = 0, since f is

balanced.
At this point we invoke a level-d inequality, stating that for every function g : {−1, 1}n → {−1, 0, 1}, we

have
∥g≤d∥2 ≤ 3d∥g∥3.

What this roughly means is that if ∥g∥ is small then most of the Fourier mass of g is concentrated on high
degrees (since the total mass is ∥g∥2, and ∥g∥3 = ∥g∥2 · ∥g∥). This is the case for subcubes. For example, the
indicator function of x1 = · · · = xm = 1 can be written as

m∏
i=1

1 + xi

2
,

and so its Fourier expansion has ĝ(S) = 2−m for all S ⊆ [m]. Here ∥g∥2 = E[g2] = E[g] = 2−m, and
∥g≤d∥2 =

(
m
≤d
)
2m, which is small unless d ≳ m/2.
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The level d inequality can be quantitatively improved, but the version we use has a simpler proof and
will suffice for us. Taking g = Lif and d = 2 Inf[S] ≤ 2c log n, we obtain

1

2
≤ 3d

n∑
i=1

∥Lif∥3 = nc log 9
n∑

i=1

Infi[f ]
3/2 ≤ nc log 9 · Inf[f ] ·

√
max

i
Infi[f ] ≤ nc log 9 · c log n ·

√
max

i
Infi[f ].

Therefore one of the influences is at least n−2c log 9/4c2 log2 n, which for an appropriate choice of c is Ω( 1√
n
),

say, completing the proof of the KKL theorem (assuming the level d inequality).

Some intuition If the total influence is Ω(log n), then obviously one of the influences has to be Ω( logn
n ).

Otherwise, the total influence is O(log n), which means that the Fourier mass of the function is concentrated
on degree up to O(log n). This implies that for the average i, at least Ω( 1

logn ) of the Fourier mass is

concentrated up to degree O(log n). This means that for the average i, the i’th influence cannot be too small,
since otherwise almost all of the mass will be beyond degree O(log n). Making this argument quantitative
gives a bound of Ω( 1√

n
) (say) on the maximal influence.

The proof of the KKL theorem might seem quite lossy. For example, the upper bound

∑
|S|≤2 Inf[S]

f̂(S)2 ≤
∑

|S|≤2 Inf[S]

|S|f̂(S)2 =

n∑
i=1

∥(Lif)
≤2 Inf[f ]∥2

is potentially loose. However, since E[|S|] = O(log n), the loss is ‘only’ O(log n). Also, whereas we get a
lower bound of Ω( logn

n ) on the maximal influence when the total influence is large, we got a much better
lower bound Ω( 1√

n
) on the maximal influence when the total influence is small. In addition, the level-d

inequality that we use can be substantially improved.
In contrast, we know that the KKL theorem is tight up to constant factors. This means that optimizing

the proof by tightening the loose parts can only improve the result by a constant factor. Typically we do
not care about such factors in Boolean function analysis.

2.4 Level-d inequality

In order to complete the proof of the KKL theorem, it remains to prove the following statement.

Lemma 4 (Weak level-d inequality). For all g : {−1, 1}n → {−1, 0, 1},

∥g≤d∥2 ≤ 3d∥g∥3.

The proof will follow from the following concentration bound.

Lemma 5 (Concentration of degree d functions). Let h : {−1, 1}n → R have degree at most d (this means
that the degree of its Fourier expansion, considered as a polynomial, is at most d). Then

∥h∥4 ≤
√
3
d
∥h∥2, where ∥h∥p = E

x
[|h(x)|p]1/p is the Lp norm of h.

Generally speaking, the L4-norm of a function can be much larger than its L2-norm. As an extreme
example, if h is the δ function of a point (that is, h(x) = 1 for some x ∈ {−1, 1}n, and h(y) = 0 otherwise)
then

∥h∥4 = 2−n/4 whereas ∥h∥2 = 2−n/2,

and so ∥h∥4 is much larger than ∥h∥2; in particular, we cannot bound ∥h∥4 ≤ C∥h∥2 for any C which is
independent of n. Lemma 5 states such a bound in which C depends only on the degree of h.

Before proving Lemma 5, let us see how it implies Lemma 4:

∥g≤d∥2 (1)
= ⟨g≤d, g⟩

Hölder
≤ ∥g≤d∥4∥g∥4/3

Lem 5
≤

√
3
d
∥g≤d∥∥g∥4/3

(2)
=

√
3
d
∥g≤d∥∥g∥3/2.
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Canceling out ∥g≤d∥ and squaring the inequality, we deduce Lemma 4.
The calculation used two simple identities. Equality (1) follows from Parseval’s identity:

⟨g≤d, g⟩ =
∑
S

ĝ≤d(S)ĝ(S) =
∑
|S|≤d

ĝ(S)2 = ∥g≤d∥2,

since ĝ≤d(S) = 0 unless |S| ≤ d.
Equality (2) holds since |g(x)|4/3 = |g(x)|2 for all x, itself a consequence of g(x) ∈ {−1, 0, 1}:

∥g∥4/3 = E
x
[|g(x)|4/3]3/4 = E

x
[|g(x)|2](1/2)·(3/2) = ∥g∥3/22 .

Strong level-d inequality Chin Ho Lee’s level-d inequality for [0, 1]-valued function gives the bound

∥g=d∥2 ≤ 4α2(2e ln(e/α1/d))d, where α = E[g] = ∥g∥2.

In other words, ∥g∥3 can be improved to roughly ∥g∥4, up to a poly-logarithmic factor.

Interpretation as a concentration inequality Suppose that f : {±1}n → R is centered: E[f ] = 0.
Chebyshev’s inequality shows that

Pr
x
[|f(x)| ≥ C∥f∥] ≤ 1

C2
.

Lemma 5 implies a stronger concentration inequality in terms of the degree d = deg f :

Pr
x
[|f(x)| ≥ C∥f∥] = Pr

x
[f(x)4 ≥ C4∥f∥4]

Markov
≤ E[f4]

C4∥f∥4
=

∥f∥44
C4∥f∥4

≤ 9d

∥f∥4
.

Using higher norms (and a corresponding generalization of Lemma 5), one can get an even better con-
centration inequality, showing that f has exponentially small tails:

Pr
x
[|f(x)| ≥ C∥f∥] ≤ exp

(
− d

2e
C2/d

)
for all C ≥ (2e)d/2.

3 Hypercontractivity

We move on to the proof of Lemma 5. This proof employs hypercontractivity, a technical tool which is behind
many results in the area.

The statement of hypercontractivity involves the noise operator Tρ. This is an operator, parametrized by
a real number ρ, which takes a function f : {−1, 1}n → R and outputs another function Tρf : {−1, 1}n → R
which is a smoothed version of f .

We define Tρ via a distribution Nρ(x) on {−1, 1}n, which is defined for every x ∈ {−1, 1}n and ρ ∈ [0, 1].
We sample y ∼ Nρ(x) by sampling each coordinate of y independently according to the following law:

yi =

{
xi w.p. 1+ρ

2 ,

−xi w.p. 1−ρ
2 .

In words, Nρ(x) is obtained by flipping each coordinate with probability 1−ρ
2 . Taking some extreme examples,

N1(x) = x always, and N0(x) is a uniform sample from {−1, 1}n.
Here is an equivalent definition, which will be useful for later generalization:

yi =

{
xi w.p. ρ,

random w.p. 1− ρ.
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To see that these definitions are equivalent, observe that Pr[yi = −xi] = (1 − ρ) · 1
2 = 1−ρ

2 , since yi = −xi

can only happen if we obtain yi by “resampling” rather than by copying xi. Similarly, Pr[yi = xi] =
ρ+ (1− ρ) · 1

2 = 1+ρ
2 .

The operator Tρ is defined by smoothing f according to Nρ:

(Tρf)(x) = E
y∼Nρ(x)

[f(y)].

In words, Tρf(x) is obtained by averaging f over a “soft neighborhood” of x. Extreme examples include
T1f = f (the identity operator) and T0f = E[f ] (the operator replacing f by the constant function E[f ]).

Since Tρf is an averaging operator, for every p ≥ 1 we have

∥Tρf∥p ≤ ∥f∥p.

To see this, notice that we can sample y ∼ Nρ(x) by sampling z ∼ Nρ(1) and taking y = zx. This shows
that

Tρf = E
z∼Nρ(1)

[fz], where fz(x) = f(zx).

The functions fz all have the same norms (since if x is a uniform sample from {−1, 1}n then so is zx), and
so ∥Tρf∥p ≤ ∥f∥p follows from the triangle inequality, which holds for all p ≥ 1.

Hypercontractivity (in the special case of the L4 and L2 norms) states a stronger inequality:

Lemma 6 (L4-L2 hypercontractivity). For every function f : {−1, 1}n → R,

∥T1/
√
3f∥4 ≤ ∥f∥2.

Intuitively, after averaging f , the resulting function is somewhat concentrated, and so its L4-norm can be
bounded. Similar inequalities hold for any two Lp-norms (with appropriate noise rates ρ), but this version
has a particularly simple proof.

Before proving Lemma 6, let us see how it implies Lemma 5. For this, we need to compute the Fourier
expression for Tρf . Since Tρ is linear, it suffices to compute TρχS :

(TρχS)(x) = E
y∼Nρ(x)

[∏
i∈S

yi

]
=
∏
i∈S

E
y∼Nρ(x)

[yi] =
∏
i∈S

(
1 + ρ

2
xi +

1− ρ

2
(−xi)

)
=
∏
i∈S

(ρxi) = ρ|S|χS(x).

Therefore
Tρf =

∑
S

f̂(S)TρχS =
∑
S

ρ|S|f̂(S)χS .

An alternative argument uses the other definition of Nρ:

(TρχS)(x) =
∏
i∈S

E
y∼Nρ(x)

[yi] =
∏
i∈S

(ρ · xi + (1− ρ) · E
zi∼random

[zi]) =
∏
i∈S

(ρxi) = ρ|S|χS(x),

since the expected value of a random sample out of {±1} is 0.
When ρ ∈ (0, 1), the operator Tρ has the effect of discounting the high-degree parts of f , acting as a kind

of “low-pass filter”.
The Fourier expression for Tρf makes sense for any value of ρ. In particular, the inverse operator of Tρ

is Tρ−1 (since ρ−|S|ρ|S| = 1). If you prefer, you can think of Tρ for ρ > 1 as the inverse operator of Tρ−1 ,
which has a probabilistic interpretation.

We can now present the proof of Lemma 5. Recall that we are given a function h of degree at most d.
Writing h = T1/

√
3T
√
3h:

∥h∥24 = ∥T1/
√
3T
√
3h∥

2
4

Lem 6
≤ ∥T√3h∥

2
2 =

∑
S

(
√
3
|S|

ĥ(S))2
deg h≤d

≤ 3d
∑
S

ĥ(S)2 = 3d∥h∥22.
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3.1 Bonami’s lemma

It remains to prove Lemma 6, also known as Bonami’s lemma. The proof is a simple induction on the
dimension.

When n = 0, f is a constant, and T1/
√
3f = f , so there is nothing to proof.

Now suppose that Lemma 6 holds for some n. We prove it for n+1. Given a function f : {−1, 1}n+1 → R,
we construct from it two functions on the n-dimensional cube by writing

f(x1, . . . , xn+1) = g(x1, . . . , xn) + xn+1h(x1, . . . , xn).

Explicitly,

g =
∑
S⊆[n]

f̂(S)χS ,

h =
∑
S⊆[n]

f̂(S ∪ {n+ 1})χS .

The Fourier formula for Tρf shows that

T1/
√
3f(x1, . . . , xn+1) = T1/

√
3g(x1, . . . , xn) +

1√
3
xn+1T1/

√
3h(x1, . . . , xn).

Indeed, Tρ has the effect of multiplying every xi in the Fourier expansion by ρ. It follows that

∥T1/
√
3f∥

4
4 = E

x1,...,xn+1

[(
T1/
√
3g(x1, . . . , xn) +

1√
3
xn+1T1/

√
3h(x1, . . . , xn)

)4]
=

E[(T1/
√
3g)

4]︸ ︷︷ ︸
(0)

+ 4√
3
E[(T1/

√
3g)

3(T1/
√
3h)]E[xn+1]︸ ︷︷ ︸

(1)

+ 6√
3
2 E[(T1/

√
3g)

2(T1/
√
3h)

2]E[x2
n+1]︸ ︷︷ ︸

(2)

+

4√
3
3 E[(T1/

√
3g)(T1/

√
3h)

3]E[x3
n+1]︸ ︷︷ ︸

(3)

+ 1√
3
4 E[(T1/

√
3h)

4]E[x4
n+1]︸ ︷︷ ︸

(4)

.

This is not as bad as it looks. Since E[xn+1] = E[x3
n+1] = 0, terms (1) and (3) drop. Using x2

n+1 = 1,
the situation simplifies to

∥T1/
√
3f∥

4
4 ≤ E[(T1/

√
3g)

4]︸ ︷︷ ︸
(0)

+2E[(T1/
√
3g)

2(T1/
√
3h)

2]︸ ︷︷ ︸
(2)

+ 1
9 E[(T1/

√
3h)

4]︸ ︷︷ ︸
(4)

.

We can bound terms (0) and (4) using the induction hypothesis, by ∥g∥42 and ∥h∥42, respectively. In order
to bound (2), we apply the Cauchy–Schwarz inequality:

(2) ≤ 2
√
E[(T1/

√
3g)

4]
√

E[(T1/
√
3h)

4] ≤ 2∥g∥22∥h∥22.

Combining the three bounds, we have

∥T1/
√
3f∥

4
4 ≤ ∥g∥42 + 2∥g∥22∥h∥22 + 1

9∥h∥
4
2 ≤ ∥g∥42 + 2∥g∥22∥h∥22 + ∥h∥42 = (∥g∥22 + ∥h∥22)2.

In order to complete the proof, observe that

∥g∥22 + ∥h∥22 =
∑
S⊆[n]

f̂(S)2 +
∑
S⊆[n]

f̂(S ∪ {n+ 1})2 =
∑

T⊆[n+1]

f̂(T )2 = ∥f∥22.

Therefore
∥T1/

√
3f∥

4
4 ≤ (∥g∥22 + ∥h∥22) = ∥f∥42,

completing the proof of the inductive step.
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3.2 General hypercontractivity

If p ≥ q ≥ 1 then

∥Tρf∥p ≤ ∥f∥q for ρ =

√
q − 1

p− 1
.

This is proved in two steps:

1. The base case n = 1, known as a two-point inequality, since it involves a function whose domain consists
of two points.

2. A short inductive argument.

By optimizing over q, one obtains the sharp level-d inequality mentioned above.

3.3 Small set expansion

Hypercontractivity has an interpretation in terms of the edge-expansion of sets. Taking p = 2 and q = 1+ ρ
in the general statement of hypercontractivity gives

∥T√ρf∥2 ≤ ∥f∥1+ρ.

Observe now that

∥T√ρf∥22 = ⟨T√ρf, T√ρf⟩ =
∑
S

(√
ρ
|S|

f̂(S)
)2

=
∑
S

ρ|S|f̂(S) · f̂(S) = ⟨Tρf, f⟩.

If f is {0, 1}-valued then ∥f∥1+ρ
1+ρ = ∥f∥22, and so

⟨Tρf, f⟩ ≤ ∥f∥21+ρ = (∥f∥22)2/(1+ρ) = E[f ]2/(1+ρ).

Suppose that f = 1S . The inner product ⟨Tρf, f⟩ can be expanded as

⟨Tρf, f⟩ = E
x
[f(x) · (Tρf)(x)] = E

x,y∼Nρ(x)
[f(x)f(y)] = Pr

x,y∼Nρ(x)
[x, y ∈ S].

Therefore

Pr
x,y∼Nρ(x)

[x, y ∈ S | x ∈ S] =
⟨Tρf, f⟩
µ(S)

≤ µ(S)(1−ρ)/(1+ρ),

where µ(S) = |S|/2n is the measure of S. In words, if we choose a random point in S and perform a short
“walk” corresponding to the noise operator Tρ,

1 then the probability that we stay in S is only µ(S)(1−ρ)/(1+ρ),
which is small when ρ is constant and µ(S) is small. In other words, small sets expand.

3.4 Log-Sobolev inequality

From a broader perspective, hypercontractivity is equivalent to fast mixing of the random walk on the
hypercube {−1, 1}n.

There are many ways to measure how fast a Markov chain mixes. Often one is interested in mixing in
total variation distance, but this can be hard to control. Another popular notion is L2 mixing: we measure
how fast the random walk mixes by computing the L2 difference between the stationary distribution and the
distribution after a given number of steps (or, in the continuous time setting, after a given amount of time).
As is well-known, the rate of convergence in the L2 metric is controlled by the spectral gap of the walk.

Diaconis and Saloff-Coste showed that hypercontractivity is equivalent to mixing in the Kullback–Leibler
metric, which is controlled by the so-called log-Sobolev constant, which is the best constant in the eponymous

1The distribution Nρ(x) corresponds a rate 1 continuous time random walk on the hypercube stopped at time 1
2
ln(1/ρ).
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log-Sobolev inequality. The log-Sobolev constant is bounded by the spectral gap, meaning that a log-Sobolev
inequality is stronger than a spectral gap (formally, having a log-Sobolev inequality implies having a spectral
gap, but the opposite doesn’t hold).

Mossel, Oleszkiewicz and Sen showed that reverse hypercontractivity (hypercontractivity for Lp-“norms”
for p < 1; the direction of the inequality is reversed!) is equivalent to satisfying a modified log Sobolev
inequality, an inequality which is weaker than log-Sobolev (but equivalent to it in the continuous setting)
but stronger than just having a spectral gap. This means that in some cases reverse hypercontractivity holds
while hypercontractivity doesn’t. Reverse hypercontractivity implies a useful hitting property: for any two
sets A,B, the probability that x ∈ A and Nρ(x) ∈ B is lower-bounded in terms of the measures of A and B.

3.5 Other noise operators

The operator Tρ is the standard noise operator used in Boolean function analysis. It has several important
properties:

• If x has the uniform distribution over {±1}n, then so does Nρ(x). This makes Tρ self-adjoint with
respect to the inner product ⟨·, ·⟩, which is defined using the uniform measure.

• Tρ is hypercontractive.

• The Fourier characters are eigenfunctions of Tρ, with eigenvalues TρχS = ρ|S|χS .

Sometimes other noise operators are studied. There are several reasons:

• We are trying to understand a particular random walk. One example is the noise operator that flips
exactly 1−ρ

2 n coordinates (rather than each coordinate with probability 1−ρ
2 ), which appears in coding

theory.

• We are interested in a different measure over {±1}n, or in a different domain altogether. We will see
an example below, the biased measure over {±1}n.

In the latter case, we don’t necessarily care about which noise operator we use, but rather about what we
can prove with it. In many applications, we aim at proving a level-d inequality. Reflecting at the proof, we
used two properties: hypercontractivity (this was used to obtain ∥f∥3 rather than just ∥f∥2 on the right-hand
side; every power larger than 2 would be useful) and a lower bound on the eigenvalues corresponding to low-

degree functions (the factor 3d is just (1/
√
3
d
)−2, where 1/

√
3
d
is the minimal eigenvalue of an eigenfunction

of degree at most d). One way to get such operators is via random walks, but this is not the only way. In
recent years, a different approach has been developed, by Noam Lifshitz and others. The idea is to use the
properties of one domain X to reason about another domain Y via a coupling between these two domains.
The noise operator we use for Y is derived from that of X via the coupling, and so it doesn’t necessarily
correspond to a random walk.

4 Sharp thresholds

One of the celebrated applications of Boolean function analysis is sharp threshold theorems. Our goal is
to outline a new proof of one of them, Bourgain’s booster theorem, using global hypercontractivity. In this
section we switch gears, moving faster while providing fewer details, and completely omitting some of the
proofs.

In the G(n, p) random graph model, there are n fixed vertices, and each of the
(
n
2

)
edges between them

is added with probability p independently. Here are two classical results about this model:

Pr
[
G
(
n,

c

n

)
contains a triangle

]
−→ 1− e−c

3/6,

Pr

[
G
(
n,

log n+ c

n

)
is connected

]
→ e−e

−c

.
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Both limits are as n → ∞.
Although this is not the subject of these notes, let us briefly explain where these two expressions come

from. The expected number of triangles in G(n, c
n ) is

(
n
3

)
(c/n)3 ≈ c3/6, and the distribution of the number

of triangles converges to a Poisson distribution, since the different triangles are mostly edge-disjoint. The
expression 1−e−c

3/6 is just the probability that a Poisson random variable with expectation c3/6 is non-zero.
Similarly, it turns out that the main obstruction for connectivity is isolated vertices. The probability

that a vertex in G(n, logn+c
n ) is isolated is (1− logn+c

n )n−1 ≈ e−c/n, and so the expected number of isolated

vertices is e−c. Once again, the distribution is roughly Poisson, and e−e
−c

is just the probability that the
Poisson random variable equals zero.

Both properties considered above are monotone: if they hold for a given graph, then they continue to
hold even if we add edges. This implies that there is a critical probability pc for which the probability of
the event is exactly 1/2. The critical probability for containing a triangle is Θ( 1n ), and for being connected

is logn+Θ(1)
n .

The “action” in the case of connectivity lies in a narrow window of width Θ( 1n ), which is much smaller

than the critical probability, which is roughly logn
n . We say that connectivity has a sharp threshold. In

contrast, in the case of containing a triangle, both are of order 1
n , corresponding to a coarse threshold.

Formally, given a monotone graph property P , let p− be the probability such that G(n, p−) satisfies P
w.p. 1/3, and let p+ be the probability such that G(n, p+) satisfies P w.p. 2/3 (the constants 1/3 and 2/3
are arbitrary). The property P has a sharp threshold if p+ − p− = o(pc).

Knowing that a threshold is sharp helps locating it, since p− ≈ pc ≈ p+. Bourgain’s booster theorem
gives a criterion: If P is a monotone graph property with a coarse threshold and pc = o(1) then there is a
subgraph H consisting of O(1) edges such that adding H to G(n, p) boosts the probability of satisfying P by
Ω(1), for some p ∈ [p−, p+]. For example, we can boost the property of containing a triangle to 1 by adding
a triangle (for a less trivial example, consider the property of containing at least 10 triangles). In contrast,
no such boosting happens for connectivity, since it is unlikely that the fixed graph H touches one of the few
isolated vertices, which are randomly distributed.

Bourgain’s original proof was short but tricky. The recently developed technique of global hypercon-
tractivity, developed by Noam Lifshitz and others, enabled them to give a simple conceptual proof. The
argument works for arbitrary monotone f : {0, 1}n → {0, 1}.

4.1 Russo–Margulis formula

For any non-constant monotone function f : {0, 1}n → {0, 1} there is a critical probability pc such that
Prx∼µpc

[f(x) = 1] = 1/2, where µp is the distribution over {0, 1}n in which each coordinate equals 1 with
probability p independently. The critical probability exists since the function

ϕf (p) = Pr
x∼µp

[f(x) = 1]

is continuous (since it can be expressed as a polynomial), increasing, and satisfies ϕf (0) = 0 and ϕf (1) = 1.
The property corresponding to f has a coarse threshold if p+ − p− = Ω(pc), where p− = ϕ−1f (1/3) and

p+ = ϕ−1f (2/3). This suggests that in order to understand coarse thresholds, we should take a look at the

derivative of ϕf : the condition above implies that ϕ′f (p) ≤
2/3−1/3
p+−p−

= O(1/pc) for some p ∈ [p−, p+].

We can compute ϕ′f (p) = limϵ→0
ϕf (p+ϵ)−ϕf (p)

ϵ using a coupling between µp+ϵ and µp. For each i, let
ui ∼ U([0, 1]) be a uniform random variable. Let x ∼ µp be obtained by setting xi = 1 if ui < p, and
similarly obtain y ∼ µp+ϵ by setting yi = 1 if ui < p+ ϵ; thus xi ≤ yi always, and xi < yi w.p. ϵ.

For a small ϵ > 0 we have

ϕf (p+ ϵ)− ϕf (p) = E
x,y

[f(y)− f(x)] = Pr
x,y

[f(x) = 0 and f(y) = 1].

If y = x then certainly f(x) = f(y). Otherwise, it is likely that x, y differ only in a single coordinate:
any other outcome has probability O(ϵ2). For any given coordinate i, the two inputs differ only on i with
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probability ϵ−O(ϵ2). Assuming this happens, the remaining coordinates are still sampled according to µp,
and so

ϕf (p+ ϵ)− ϕf (p) = ϵ

n∑
i=1

Pr
z∼µp

[f(z|i←0) = 0 and f(z|i←1) = 1] +O(ϵ2),

where z|i←b sets zi to b.
We immediately deduce the Russo–Margulis formula:

ϕ′f (p) =

n∑
i=1

Pr
z∼µp

[f(z|i←0) = 0 and f(z|i←1) = 1].

The expression on the right should ring a bell: it is very similar to the definition of total influence.

4.2 Biased Fourier analysis

In order to proceed, we need to introduce biased Fourier analysis, which is Fourier analysis on {0, 1}n with
respect to the biased measure µp. Up to now we have considered the case p = 1/2 (though using ±1 rather
than 0, 1, only a minor difference).

One salient property of the Fourier basis χS was its orthonormality. In our new setting, we also seek a
basis ωS which is orthonormal with respect to the inner product

⟨f, g⟩ = E
x∼µp

[f(x)g(x)].

Moreover, we would like ωS to depend only on the coordinates in S. Up to sign, this completely determines
ωS :

ωS(x1, . . . , xn) =
∏
i∈S

xi − p√
p(1− p)

.

Where does this formula come from? We simply subtracted from xi its expectation (this implies orthog-
onality), and divided by the standard deviation (this implies orthonormality).

As in the classical case of {−1, 1}n, here as well we define the Fourier expansion to be

f =
∑
S⊆[n]

f̂(S)ωS .

The parameter p does not appear anywhere in this expression! It will have to be understood from context.
Next, we would like to obtain a Fourier expression for ϕ′f . The first step is to replace the existing

expression by one which is more amenable to “L2 manipulations”:

ϕ′f (p) =

n∑
i=1

Pr
z∼µp

[f(z|i←0) = 0 and f(z|i←1) = 1] =

n∑
i=1

E
z∼µp

[
(
f(z|i←0)− f(z|i←1)

)2
].

Substituting the Fourier expansion,

f(z|i←0)− f(z|i←1) =
∑
S

f̂(S)(ωS(z|i←0)− ωS(z|i←1)) =
∑
i∈S

f̂(S)ωS\{i}(z)
(0− p)− (1− p)√

p(1− p)
=

−1√
p(1− p)

∑
i∈S

f̂(S)ωS\{i}(z).

This implies that

E
z∼µp

[
(
f(z|i←0)− f(z|i←1)

)2
] =

1

p(1− p)

∑
i∈S

f̂(S)2.
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Suggestively, we define the i’th influence using the same Fourier expression as before:

Infi[f ] =
∑
i∈S

f̂(S)2.

In these terms, the Russo–Margulis formula becomes

ϕ′f (p) =
1

p(1− p)
Inf[f ].

Recall that if the threshold is coarse then ϕ′f (p) = O(1/p) for some p ∈ [p−, p+]. The assumption

pc = o(1) implies that also p = o(1),2 and so ϕ′f (p) = O(1/p(1− p)). In total, we deduce that

Inf[f ] = O(1)

for some p ∈ [p−, p+].
If p were constant, then Friedgut’s celebrated junta theorem (whose proof is very similar to the proof of

the KKL theorem) states that f is close to a junta, which is a function depending on O(1) coordinates.

Theorem 7 (Friedgut’s junta theorem). Let f : {±1}n → {±1}, where {±1}n is considered with respect to
the uniform distribution. For every ϵ > 0, there exists a function g : {±1}n → {±1} depending on 2O(Inf[f ]/ϵ)

coordinates such that Pr[f ̸= g] = O(ϵ) (we say that f is O(ϵ)-close to g).

This cannot be the case for graph properties such as containing a triangle, since they are isomorphism-
invariant, implying that all coordinates “look the same”. Something in the Fourier argument thus has to
break down, and this thing is hypercontractivity.

For completeness, we include a sketch of the proof of Friedgut’s junta theorem.

Proof. The function g will depend on all variables whose influence is at least τ > 0, for some τ which arises
from the proof. Let J be the set of these variables, and define a function G by averaging over all variables
not in J . The function G is not necessarily Boolean, and g itself will be defined by rounding it to a Boolean
function.

If χS is a character and we average it over all coordinates outside of J , then there are two cases. If S ⊆ J
then averaging over the coordinates outside of J has no effect. Otherwise, averaging “kills” the character
(reduces it to the zero function):

E
xJ

[χS ] =
∏

i∈S∩J
xi ×

∏
i∈S\J

E[xi] = 0.

Therefore
G =

∑
S⊆J

f̂(S)χS .

This formula allows us to compute the distance between f and G:

E[(f −G)2] = E


∑

S⊈J

f̂(S)χS

2
 =

∑
S⊈J

f̂(S)2.

We now proceed as in the proof of the KKL theorem, using Pr[|S| ≥ Inf[f ]/ϵ] ≤ ϵ:

E[(f −G)2] ≤ ϵ+
∑

|S|≤Inf[f ]/ϵ

|S \ J |f̂(S)2 = ϵ+
∑
i/∈J

∥Lif
≤Inf[f ]/ϵ∥2.

2It suffices to observe that p+ ≤ 2pc = o(1). Indeed, sample x, y ∼ µpc and take their maximum z = x∨y, whose distribution
is µ2pc−p2c

. Since f(z) = 1 if either f(x) = 1 or f(y) = 1, we have ϕf (2pc − p2c) ≥ 3/4. Thus p+ ≤ 2pc − p2c .
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Applying the level-d inequality,

E[(f −G)2] ≤ ϵ+ 3Inf[f ]/ϵ
∑
i/∈J

∥Lif∥3 ≤ ϵ+ 3Inf[f ]/ϵ Inf[f ] max
i/∈J

√
Infi[f ] ≤ ϵ+ 3Inf[f ]/ϵ Inf[f ]

√
τ .

We can write this as
E[(f −G)2] ≤ ϵ

(
1 + 3Inf[f ]/ϵ(Inf[f ]/ϵ)

√
τ
)
.

Choosing τ = ( 1
3Inf[f]/ϵ(Inf[f ]/ϵ)

)2, we obtain E[(f −G)2] ≤ 2ϵ.

There are at most Inf[f ]/τ = 2O(Inf[f ]/ϵ) many coordinates in J .3 Thus f is close to a function G
depending on the correct number of coordinates. The only problem is that G isn’t Boolean. Fortunately,
this is easy to fix. We define g by rounding G to {−1, 1} pointwise. The function g clearly depends on the
same coordinates as G. On the other hand, if a ∈ {−1, 1}, b is arbitrary, and B results from rounding b to
{−1, 1}, then

(a−B)2 ≤ 4(a− b)2.

(The worst case is a = 1, b = −ϵ, B = −1.) This shows that E[(f − g)2] ≤ 8ϵ. Since both f and g are
Boolean, this implies that Pr[f ̸= g] = 2ϵ.

5 Global hypercontractivity

Bonami’s lemma states that when p = 1/2,

∥Tρf∥4 ≤ ∥f∥2, where ρ =
1√
3
.

Does this hold for other values of p, perhaps with a different ρ? In order to even state this question, we
need to define Tρf in general. We simply take the Fourier definition:

Tρf =
∑
S

ρ|S|f̂(S)ωS .

This is a reasonable definition since it will allow us to mimic arguments such as the proof of the KKL lemma,
which involved only the Fourier interpretation of Tρ.

That said, there is also a natural interpretation of Tρ as an averaging operator with respect to the
distributions Nρ(x), defined as follows:

yi =

{
xi w.p. ρ,

µp w.p. 1− ρ,

where in the second case we resample the coordinate according to µp. To see that this works, observe that
(using Tρ for the definition using Nρ)

Tρ
xi − p√
p(1− p)

= E

[
yi − p√
p(1− p)

]
= ρ

xi − p√
p(1− p)

+ (1− ρ) E
zi∼µp

[
zi − p√
p(1− p)

]
= ρ

xi − p√
p(1− p)

.

Therefore Tρωi = ρωi. Similarly, TρωS = ρ|S|ωS .
Instead of considering hypercontractivity directly, it will be slightly easier to consider its immediate

consequence, Lemma 5:
∥f∥4 ≤ ρ− deg f∥f∥2.

3For this calculation to work out we need the benign assumption ϵ = O(1) (if it doesn’t hold, we can use any Boolean
function for g).
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Taking as f the function f(x) = x1, this inequality reads

p1/4 ≤ ρ−1p1/2 =⇒ ρ ≤ p1/4.

It turns out that Bonami’s lemma indeed holds for some ρ = O(p1/4), with a very similar proof (the only
complication is that the term we denoted by (3) no longer vanishes). This allows most results in the area to
carry through for arbitrary p (though we do lose the property χSχT = χS△T which was useful for analyzing
linearity testing).

When p = o(1) (as in the case of the critical probability of the two graph properties considered above),
the parameter ρ has to go to zero with n, and hypercontractivity becomes useless, due to the appearance of
ρ−1 in the proof (cf. the proof of KKL). This is not just an issue with hypercontractivity itself: results such
as Friedgut’s junta theorem, which hold for constant p, stop working, and a more nuanced picture appears.

It turns out that we can recover hypercontractivity if we assume that f is global. In order to define this
concept, we first define the operator Di, familiar from the Russo–Margulis formula:

Dif(x) = f(x|i←1)− f(x|i←0).

This is just the derivative of the Fourier expansion of f with respect to xi. Also, up to scaling, this is
(almost) the same as the operator Li considered in Section 2. Indeed, computing the derivative of the
Fourier expansion gives

Dif =
1√

p(1− p)

∑
i∈S

f̂(S)ωS\{i}.

We extend the definition of Di to sets of coordinates:

D{i1,...,iℓ}f = Di1Di2 · · ·Diℓf.

The order of application doesn’t matter since

DSf(x) =
∑

y∈{0,1}S
(−1)|y|+|S|f(x|S←y) =

1

(p(1− p))|S|/2

∑
S⊆T

f̂(T )ωT\S .

A function f is β-global if
∥DSf∥2 ≤ β for all S.

When p = 1/2, ∥Dif∥22 = 4 Infi[f ], and so globalness means that all influences are small, as well as some
higher-order extensions of them.

A function such as f(x) = x1 is not global (that is, not β-global for any small β) since D1f = 1.
Globalness also considers higher-order derivatives. This is necessary since functions such as f(x) = x1x2

also falsify Lemma 5.
We can now state one version of global hypercontractivity: if f is β-global then

∥Tρf∥4 ≤
√
β∥f∥2 for some universal constant ρ independent of p.

Global hypercontractivity can be proved in several ways. While none of them is particularly difficult, all
of them are somewhat long, and so we skip the proof.

5.1 Bourgain’s booster theorem

Finally we have all the tools to prove Bourgain’s booster theorem. Given a non-constant monotone function
f : {0, 1}n → {0, 1} such that Inf[f ] ≤ K with respect to some p such that p ∈ [p−, p+], we would like to
show that there is a set S of OK(1) coordinates such that Prx∼µp

[f(x|S←1)] ≥ ϕf (p) + ΩK(1).
The proof is very similar to the proof of the KKL theorem, where the assumption Inf[f ] ≤ K replaces

the assumption Inf[f ] ≤ c log n. On the one hand,

∥f∥2 = E[f2] = E[f ] ≥ 1

9
,
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and on the other hand,

∥f≥10K∥2 ≤ 1

10

using Markov’s inequality. Thus

∥f≤10K∥2 ≥ 1

90
.

Next, we mimic the proof of the weak level-d inequality, Lemma 4:

1

90
≤ ∥f≤10K∥2 = ⟨f≤10K , f⟩ ≤ ∥f≤10K∥4∥f∥4/3.

When proving the level-d inequality, we related ∥f∥4/3 and ∥f∥2. Here it is enough to use the simple
bound

∥f∥4/3 ≤ ∥f∥2 ≤ 1,

which follows from the monotonicity of Lq-norms in q. Thus

∥f≤10K∥4 ≥ 1

90
.

At this point we invoke global hypercontractivity. We first write f≤10K = TρTρ−1f≤10K , where ρ is the
constant from global hypercontractivity. Let β be the globalness of Tρ−1f≤10K , that is, the minimum β such
that Tρ−1f≤10K is β-global. Then

1

902
≤ β∥Tρ−1f≤10K∥2 ≤ βρ−10K∥f∥2 ≤ β.

We deduce that the function f≤10K isn’t so global! There must exist a set S such that

∥DSTρ−1f≤10K∥2 ≥ ρ10K

902
.

Since DS is the derivative according to the coordinates in S, we have DSTρ−1f≤10K = 0 unless |S| ≤ 10K.
Therefore the set S above has size at most 10K. On the other hand, the Fourier expression for DS implies
that ∥DSTρ−1f≤10K∥2 ≤ ρ−10K∥DSf∥2. Summarizing, there exists a set S of size at most 10K such that

ρ40K

904
≤ ∥DSf∥22.

We are almost done. Recall the explicit expression

DSf(x) =
∑

y∈{0,1}S
(−1)|y|+|S|f(x|S←y).

We always have |DSf(x)| ≤ 2|S|−1, and furthermore DSf(x) = 0 unless f(x|S←1) = 1 and f(x|S←0) = 0.
Therefore

ρ40K

904
≤ E

x∼µp

[(DSf(x))
2] ≤ 410K Pr

x∼µp

[f(x|S←1) = 1 and f(x|S←0) = 0] =⇒

Pr
x∼µp

[f(x|S←1) = 1 and f(x|S←0) = 0] ≥ e−Ω(K).

The set S is the required booster, since x|S = 0 happens with probability OK(pc). Formally,

E
x∼µp

[f(x|S←1)] ≥ E
x∼µp

[f(x|S←0)]+e−Ω(K) ≥ E
x∼µp

[f(x)]− Pr
x∼µp

[x|S ̸= 0]+e−Ω(K) = E
x∼µp

[f(x)]+e−Ω(K)−10Kp.

If p = o(1) (which follows from pc = o(1)), then the final error term is insignificant, completing the proof.
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6 Bonus: Erdős–Ko–Rado

As a bonus, here is a short proof of the p-biased version of the Erdős–Ko–Rado theorem.

Theorem 8 (Erdős–Ko–Rado). If p ≤ 1/2 and F is an intersecting family then µp(F) ≤ p.
If furthermore p < 1/2 and µp(F) = p then F = {S : i ∈ S} for some i.

Consider the following distribution:

• x ∼ µp.

• y ∼ Nρ(x), where ρ = − p
1−p .

We claim that x, y are always disjoint (where we identify elements of {0, 1}n with subsets of [n]). Indeed,
considering the probabilistic interpretation of Nρ (pretending that ρ ∈ [0, 1]), the probability that xi = yi = 1
is

p · (ρ+ (1− ρ)p = p ·
(
− p

1− p
+

1

1− p
· p
)

= 0.

If F is intersecting and f = 1F then

⟨f, Tρf⟩ = E
x,y

[f(x)f(y)] = 0.

On the other hand,

⟨f, Tρf⟩ =
∑
S

(
− p

1− p

)|S|
f̂(S)2 ≥ f̂(∅)2 − p

1− p

∑
S ̸=∅

f̂(S)2,

using p
1−p ≤ 1, which holds when p ≤ 1/2.

Recall that f̂(∅) = µp(F). Also,∑
S ̸=∅

f̂(S)2 =
∑
S

f̂(S)2 − f̂(∅)2 = E[f2]− E[f ]2 = Var[f ] = µp(F)(1− µp(F)).

It follows that

0 ≥ µp(F)2 − p

1− p
µp(F)(1− µp(F)) =⇒ 0 ≥ (1− p)µp(F)− p(1− µp(F)) = µp(F)− p.

In other words, µp(F) ≤ p.
If µp(F) = p then the inequality

∑
S

(
− p

1− p

)|S|
f̂(S)2 ≥ f̂(∅)2 − p

1− p

∑
S ̸=∅

f̂(S)2

has to be tight. When p < 1/2 we have p
1−p < 1, and so this inequality can only be tight if all the Fourier mass

of f lies on levels 0 and 1, that is, deg f ≤ 1. A short argument (exercise!) implies that f ∈ {0, 1, xi, 1− xi}
for some i. Since f = 1F , necessarily f = xi, and so F = {S : i ∈ S}.

This argument in fact shows a little bit more: if µp(F) is close to p then almost all the Fourier mass
of f lies on levels 0 and 1. The Friedgut–Kalai–Naor theorem (which was proved in order to complete the
proof of Kalai’s quantitative Arrow’s theorem) then implies that f is close to a function of one of the forms
0, 1, xi, 1− xi, and so F is close to a family of the form {S : i ∈ S}.
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