
Removal Lemmas: Summer School 2025

3 The induced removal lemma

It is natural to consider a variant of the removal lemma for induced subgraphs. In this case, we
allow both adding and removing edges, since adding edges may also be useful in order to make a
graph induced H-free. Thus, an n-vertex graph G is said to be ε-far from induced H-free if one has
to add/delete at least εn2 edges in order to make G induced H-free. The following is the induced
analogue of the removal lemma:

Theorem 3.1 (Induced removal lemma, Alon-Fischer-Krivelevich-Szegedy 2000). Let H be a fixed
graph. For every ε > 0 there is δ = δH(ε) > 0 such that if an n-vertex graph G is ε-far from induced
H-free, then G contains at least δnv(H) induced copies of H.

The proof of Theorem 3.1 is significantly more complicated than that of Theorem 1.1. The natural
approach is to take a regular partition and try to clean it, arguing that if after the cleaning there
still remains an induced copy of H, then before the cleaning there are many such copies. For the
cleaning, it is natural to delete all possible edges between Vi, Vj if d(Vi, Vj) is close to 0, and to add
all possible edges between Vi, Vj if d(Vi, Vj) is close to 1. However, it is not clear how to handle the
non-regular pairs (Vi, Vj) and the edges inside the sets Vi. Whereas in the non-induced case we could
simply delete all such edges and thus make sure that any remaining H-copy uses none of them, it
is not clear how to proceed in the induced case. We will need a more involved “regularity scheme”.
Let us now describe the structure that we need in order to prove Theorem 3.1. We only present the
main ideas and avoid many of the details.

Regularity scheme for induced removal

The proof of Theorem 3.1 proceeds by finding an ε-regular partition V1, . . . , Vt of G, and disjoint
Ui,1, . . . , Ui,h ⊆ Vi, where h = |V (H)| (say), such that the following holds:

1. All pairs (Ui,k, Uj,ℓ) for (i, k) ̸= (j, ℓ) are ε-regular.

2. For every 1 ≤ i < j ≤ t, all pairs (Ui,k, Uj,ℓ) for k, ℓ ∈ [h] have the same density, up to ε.

3. For every 1 ≤ i ≤ t, either d(Ui,k, Ui,ℓ) ≥ 1
2 for all 1 ≤ k < ℓ ≤ h, or d(Ui,k, Ui,ℓ) ≤ 1

2 for all
1 ≤ k < ℓ ≤ h.

4. For all but εt2 of the pairs 1 ≤ i < j ≤ t, it holds that |d(Vi, Vj) − d(Ui,k, Uj,ℓ)| ≤ ε for all
k, ℓ ∈ [h].

Cleaning the graph consists of the following:

(a) For every 1 ≤ i < j ≤ t, if d(Ui,k, Uj,ℓ) ≥ 1− 2ε for all k, ℓ ∈ [h], then make (Vi, Vj) complete,
and if d(Ui,k, Uj,ℓ) ≤ 2ε for all k, ℓ ∈ [h], then make (Vi, Vj) empty. Else, make no changes.
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(b) For every 1 ≤ i ≤ t, if d(Ui,k, Ui,ℓ) ≥ 1
2 for all 1 ≤ k < ℓ ≤ h then make Vi a clique, and if

d(Ui,k, Ui,ℓ) ≤ 1
2 for all 1 ≤ k < ℓ ≤ h then make Vi an independent set.

Note that in Item (a), if we make no changes between (Vi, Vj) then ε ≤ d(Ui,k, Uj,ℓ) ≤ 1 − ε for
all k, ℓ ∈ [h], meaning that we can embed both edges and non-edges in these pairs (Ui,k, Uj,ℓ).

The sets Ui,k are sometimes called representatives for Vi; the changes between Vi and Vj (or
within Vi) are made according to their representatives (Ui,k, Uj,ℓ). Items 2-3 require that these
representatives are consistent. Item 4 is meant to ensure that the number of changes made when
cleaning the graph (in Item (a)) is small. The proof proceeds by showing that if there is a copy of
H in the cleaned graph, say (without loss of generality) between some sets V1, . . . , Vr and using ai
vertices from Vi for each i ∈ [r], then we can find many H-copies in the original graph by taking ai
representative sets Ui,k from Vi for each 1 ≤ i ≤ k.

Very roughly speaking, the structure described in Items 1-4 is found as follows: First, apply the
regularity lemma to find the partition P = {V1, . . . , Vt}. Then apply the regularity lemma again with
a much smaller regularity parameter (which depends on t; much smaller than 1/t in fact) to find a
partition Q refining P, and sample a set Ui ⊆ Vi randomly. With high probability, all pairs (Ui, Uj)
are highly regular. Now apply the regularity lemma on G[Ui] (this time with parameter ε again) to
partition Ui into sets Ui,k, and apply Ramsey’s theorem (preceded by Turán’s theorem) on these sets
to find Ui,1, . . . , Ui,h satisfying Item 3. Items 1-2 hold because all pairs (Ui, Uj) are highly regular.

To satisfy Item 4, more is required, and in fact the above presentation is somewhat misleading:
One applies the regularity lemma not just twice but repeatedly, obtaining a sequence of partitions Pi

such that Pi+1 refines Pi and is regular with a parameter appropriately defined in terms of |Pi|. One
stops when q(Pi+1) ≤ q(Pi) + ε, where q(·) is the mean square density. It is then possible to show
that Item 4 holds. This argument proves the so-called strong regularity lemma, which we shall not
go into. In the following section, we will see in more detail a variant of the above regularity scheme.

The infinite removal lemma

It is natural to ask for an analogue of the removal lemma for families of forbidden (induced) subgraphs.
The more general result of this type was obtained by Alon and Shapira, and applies to any (possibly
infinite) graph family.

Theorem 3.2 (Infinite removal lemma, Alon-Shapira 2005). Let H be a (possibly infinite) family of
graphs. For every ε > 0 there exist δ = δH(ε) > 0 and m = mH(ε) ≥ 1 such that if an n-vertex graph
G is ε-far from induced H-freeness, then there is H ∈ H with |V (H)| ≤ m, such that G contains at
least δnv(H) copies of H.

Polynomial removal lemmas

A key question is to characterize the graph-families H for which δH(ε) and mH(ε) in Theorem 3.2
depend polynomially on ε (more precisely, on ε and 1/ε, respectively).

Problem 3.3. For which graph-families H is the induced H-free removal lemma polynomial?

A special case of this problem (for the property of not-necessarily-inducedH-freeness) was handled
in Section 2. Returning to the induced H-removal lemma for a single graph H, works of Alon-Shapira
and Alon-Fox give the following almost complete characterization. We use Pk (resp. Ck) to denote
the path (resp. cycle) with k vertices.
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Theorem 3.4 (Alon-Shapira 2006, Alon-Fox 2015). text

1. If H ∈ {P2, P2, P3, P3, P4} then the induced H-removal lemma is polynomial.

2. If H /∈ {P2, P2, P3, P3, P4, C4, C4} then the induced-H removal lemma is not polynomial.

The only remaining case is H = C4.
1 This case remains open, but an exponential bound is known:

Theorem 3.5 (Gishboliner-Shapira 2019). For the induced-C4 removal lemma, we have

δC4(ε) ≥ 2−poly(1/ε).

Conjecture 3.6. The induced-C4 removal lemma is polynomial.

4 VC-dimension and ultra-strong regularity

We begin by recalling the definition of VC-dimension, and then discuss its connection to graphs and
regularity.

Definition 4.1 (Shattered set, VC-dimension). Let F be a family of subsets of a set V . A set S ⊆ V
is shattered by F if for every T ⊆ S, there exists F ∈ F with S ∩ F = T . The VC-dimension of F
is the maximum size of a shattered set.

VC-dimension is a fundamental measure of complexity used in combinatorics and computer sci-
ence. One of the basic facts about VC-dimension is the so-called Sauer-Shelah lemma, stating the
following:

Theorem 4.2 (Sauer-Shelah lemma). Let F ⊆ 2[n] be a family of subsets of [n] with VC-dimension
d. Then |F| ≤

∑d
i=0

(
n
i

)
.

Note that the bound in Theorem 4.2 is tight, because the set family consisting of all sets of size at
most d has VC dimension d.

Proof of Theorem 4.2. We prove by induction on n that the number of sets shattered by F is at
least |F|. This suffices, because if |F| >

∑d
i=0

(
n
i

)
then there must exist a shattered set of size larger

than d+ 1, and hence the VC-dimension is larger than d+ 1.

Write F0 = {F ∈ F : n /∈ F} and F1 = {F \ {n} : F ∈ F , n ∈ F}. Then F0,F1 ⊆ 2[n−1], and
F = F0 ∪ F1. By induction, Fi shatters at least |Fi| sets for i = 0, 1. Every set shattered by F0 or
F1 is (trivially) shattered by F . Also, it is easy to see that if S is shattered by both F0,F1, then
S ∪ {n} is shattered by F . This allows us to conclude that

#{sets shattered by F} ≥ #{sets shattered by F0}+#{sets shattered by F1} ≥ |F0|+ |F1| = |F|.

■

In applications, the exact bound
∑d

i=0

(
n
i

)
from Theorem 4.2 is often not important; the crucial

fact is that |F| is polynomial in n.

To use VC-dimension in the context of graphs, we consider the following set-family: Let G be a
graph, and let F = {N(v) : v ∈ V (G)}. The VC-dimension of G is defined as the VC-dimension of

1The case H and H are equivalent.
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the set-family F . What does it mean for a graph to have unbounded VC-dimension? It means that
for every fixed d ≥ 1, there is a set S = {x1, . . . , xd} shattered by F . This in turn means that there
are vertices (yI : I ⊆ [d]), such that yI is adjacent to xi if and only if i ∈ I. In what follows, we
will want to assume that yI /∈ {x1, . . . , xd} for every I. This can be achieved by taking a slightly
larger shattered set S = {x1, . . . , xd, xd+1, . . . , xd+k}, where we think of xd+1, . . . , xd+k as “dummy
vertices”. Doing this supplies us with 2k different vertices to play the role of yI for each I ⊆ [d], so
if 2k > d then we can choose such a yI which is outside {x1, . . . , xd}.

We now see that if G has unbounded VC-dimension, then it has a bi-induced copy of every fixed-
size bipartite graph H = (A,B) (recall Definition 1.6). Indeed, we can construct such a copy by
first choosing a shattered set S = {x1, . . . , xd} to play the role of A, and then, for each b ∈ B,
choosing yI for I which corresponds to the neighborhood of b in A (namely, if A = {a1, . . . , ad},
then I is the set of all i ∈ [d] such that aib ∈ E(H)). By taking a slightly larger set S (of size
d+ k for 2k ≥ |B|, as above), we can make sure that we have enough vertices yI with neighborhood
{xi : i ∈ I} in {x1, . . . , xd}, in case several vertices in B have the same neighborhood in H. We thus
conclude the following:

Fact 4.3. G has unbounded VC-dimension if and only if G contains a bi-induced copies of all fixed-
size bipartite graphs.2

The above is of course not a rigorous statement (because of the term “unbounded”), but it should
be clear what it means. A rigorous statement would be that if G has VC-dimension at least d1,
then it contains bi-induced copies of all bipartite graphs of size d2 (for some d2 growing with d1),
and vice versa.

What can we say about a graph G which avoids bi-induced copies of some fixed bipartite H? Let
us apply the regularity lemma to obtain an ε-regular equipartition V1, . . . , Vt. By Lemma 1.7, all
regular pairs (Vi, Vj) have density at most γ or at least 1 − γ, provided that ε ≪ γ. Thus, there is
an equipartition of V (G) where all but γt2 of the pairs (Vi, Vj) have density at most γ or at least
1−γ.3 Such a partition is called γ-homogeneous. Thus, bounded VC-dimension implies the existence
of γ-homogeneous partitions. However, the partition obtain in this way is very large, of tower-type
size in 1/γ. Can we do better? As we will now show, using the Sauer-Shelah lemma we can find a
partition of size only polynomial in 1/γ. The key fact we will need is as follows:

Lemma 4.4. If G has VC-dimension d, then for every ε > 0, there are vertices x1, . . . , xt, t ≤
(1/ε)O(d), such that for every x ∈ V (G) there is i ∈ [t] with |N(x)△N(xi)| ≤ εn.

Proof. Let x1, . . . , xt be a maximum collection of elements such that |N(xi)△N(xj)| > εn for every
1 ≤ i < j ≤ t. It suffices to show that t < t0 := (1/ε)d+1.4 Suppose not, and suppose that t = t0
(by disposing of the other xi’s). Sample a subset U ⊆ V (G) of size |U | = m := 2 log(t)

ε = Õ(1ε ). For
1 ≤ i < j ≤ t, the probability that N(xi) ∩ U = N(xj) ∩ U is at most(

(1−ε)n
m

)(
n
m

) ≤ (1− ε)m ≤ e−εm = t−2.

2We only proved one direction, but the other direction is also easy: Take the d× 2d incidence bipartite graph of [d]
versus subsets of [d]. If G contains a bi-induced copy of this bipartite graph, then its VC-dimension is at least d.

3Such a pair is called γ-homogeneous. Note that a being homogeneous is a stronger property than being regular: a
γ-homogeneous pair is necessarily γ1/3-regular. This is left as an exercise for the reader.

4As one can see from the proof, (1/ε)d+1 can be replaced with Õ(1/εd).
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By the union bound, there is an outcome for U such that N(xi) ∩ U ̸= N(xj) ∩ U for every 1 ≤ i <

j ≤ t. But now (N(xi) ∩ U : 1 ≤ i ≤ t) is a set system on U of size t = (1/ε)d+1 >
∑d

i=0

(|U |
i

)
, so by

the Sauer-Shelah lemma (Theorem 4.2), it has VC-dimension larger than d, in contradiction to the
assumption that G has VC-dimension d. ■

We will now use Lemma 4.4 to find a small ε-homogeneous equipartition of a graph G with
bounded VC-dimension. As far as we know, this result is originally due to Lovász-Szegedy and
Alon-Fischer-Newman.

Theorem 4.5 (Lovász-Szegedy 2010, Alon-Fischer-Newman 2007). If G has VC-dimension d, then
it has an ε-homogeneous equipartition of size (1/ε)O(d).

Proof. Let x1, . . . , xt ∈ V (G), t ≤ (1/γ)O(d), be the vertices given by Lemma 4.4, applied with
parameter γ = poly(ε) ≪ ε to be chosen (implicitly) later. For each i ∈ [t], let Xi be the set of all
x ∈ V (G) such that |N(x)△N(xi)| ≤ γn. So X1 ∪ · · · ∪ Xt = V (G) by the guarantees of Lemma
4.4. The idea is to claim that X1, . . . , Xt is an ε-homogeneous partition. The partition X1, . . . , Xt

is not an equipartition, so we need to adapt the definition of a ε-homogeneous partition to allow
parts of different sizes: A partition X1, . . . , Xt is ε-homogeneous if the sum of |Xi||Xj | over all pairs
1 ≤ i, j ≤ t with ε < d(Xi, Xj) < 1− ε is at most εn2. This sum includes terms i = j.

Let us now show that {X1, . . . , Xt} is ε-homogeneous. Sample vertices x, y ∈ V (G) uniformly at
random and then a vertex x′ belonging to the same part Xi as x. Let A be the event that xy ∈ E(G)
but x′y /∈ E(G), or vice versa. In other words, this is the event that y ∈ N(x)△N(x′). We will
show that due to the choice of X1, . . . , Xt, P[A] ≤ 2γ, and that this implies that {X1, . . . , Xt}
is ε-homogeneous. First, condition on the choice of x, x′. Since x, x′ are in the same part Xi,
we have |N(x)△N(x′)| ≤ |N(x)△N(xi)| + |N(x′)△N(xi)| ≤ 2γn (by the triangle inequality), so
P[y ∈ N(x)△N(x′)] ≤ 2γ. It follows that P[A] ≤ 2γ.

Now suppose by contradiction that {X1, . . . , Xt} is not ε-homogeneous. Fix a pair Xi, Xj with
ε < d(Xi, Xj) < 1− ε. We need the following claim:

Claim 4.6. For disjoint vertex-sets U, V , if ε < d(U, V ) < 1− ε, then there are Ω(ε)|U |2|V | triples
x, x′ ∈ U, y ∈ V or Ω(ε)|V |2|U | triples x, x′ ∈ V, y ∈ U satisfying y ∈ N(x)△N(x′).

The claim is left as an exercise for the reader.

By the claim, without loss of generality there are Ω(ε)|Xi|2|Xj | triples x, x′ ∈ Xi, y ∈ Xj with
y ∈ N(x)△N(x′). The probability that the random vertices x, x′, y form such a triple is

Ω(ε)|Xi|2|Xj |
n2|Xi|

=
Ω(ε)|Xi||Xj |

n2
.

Summing over all non-ε-homogeneous pairs (Xi, Xj) and using the assumption that {X1, . . . , Xt}
is not ε-homogeneous, we get P[A] ≥ Ω(ε2) > 2γ, provided that γ is small enough. This is a
contradiction.

A last step, in order to obtain an equipartition, is to chop up each part Xi into equal-sized parts
plus maybe one leftover part, then collect the leftover parts and partition them again into equal-
sized parts. One can show that (if the part size is small enough) then the resulting partition is still
β-homogeneous for β which depends polynomially on ε. (A refinement of a ε-homogeneous partition
is O(

√
ε)-homogeneous, which follows from Markov’s inequality). ■

Alon, Fischer and Newman in fact proved a stronger statement: They show that it suffices to
assume that G has few bi-induced copies of some fixed bipartite graph H (instead of assuming that
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G has no such copies at all). This result, as well as Theorem 4.5, are sometimes called an ultra-strong
regularity lemma.

Theorem 4.7 (Alon-Fischer-Newman 2007). For every bipartite graph H and ε > 0, there is δ =
poly(ε) > 0, such that the following holds. If an n-vertex graph G has at most δnv(H) bi-induced
copies of H, then G has an ε-homogeneous equipartition into at most 1

δ parts.

Let us now translate the condition of avoiding bi-induced copies of a bipartite graph to the
condition of avoiding induced subgraphs of certain types. A co-bipartite graph is the complement of
a bipartite graph. A split graph is a graph whose vertex-set can be partitioned into a clique and an
independent set.

Lemma 4.8. Let F1 be a bipartite graph, F2 be a co-bipartite graph, F3 be a split graph. There
is a bipartite graph H = (A,B) such that if G has no induced copies of F1, F2, F3, then it has no
bi-induced copies of H.

Note that the three graph types (bipartite, co-bipartite, split) capture all possibilities of parti-
tioning the vertex-set into two homogeneous sets (cliques or independent sets).

Proof sketch of Lemma 4.8. We need to show that there is a bipartite H = (A,B) such that no
matter how we place edges inside A and inside B, we get a graph which contains an induced copy of
F1, F2 or F3. We show that a large enough random graph H satisfies this. Let the edges inside A and
B be given. We can use Ramsey’s theorem to partition almost all of A and of B into homogeneous
sets of size k, where k ≥ |V (Fi)| for i = 1, 2, 3. Now, for such a partition, the probability that there
is no induced copy of F1, F2, F3 is at most 1−2−k2 . Thus, if |A| = |B| = m, the probability of failure
is at most (1− 2−k2)m

2/k2 ≤ e−Ωk(m
2). On the other hand, the number of partitions is at most m2m,

so we can take a union bound. ■

By combining Theorem 4.7 and Lemma 4.8, one can prove the following:

Theorem 4.9 (Gishboliner-Shapira 2017). If H is a finite graph-family containing a bipartite graph,
a co-bipartite graph and a split graph, then the induced-H removal lemma has polynomial bounds.

Proof sketch. The proof follows the scheme described in Section 3. Let F1, F2, F3 ∈ H such that
F1 is bipartite, F2 is co-bipartite and F3 is split. Let H be the bipartite graph given by Lemma
4.8. Let G be an n-vertex graph which is ε-far from being induced-H-free. Suppose first that G
contains at least δnv(H) bi-induced copies of H.5 Then by Lemma 4.8, there is i = 1, 2, 3 such that G
contains at least δ

3n
v(H) vertex-sets of size v(H) which contain an induced copy of Fi. On the other

hand, each induced copy of Fi is in at most nv(H)−v(Fi) such vertex sets, so there are at least δ
3n

v(Fi)

induced copies of Fi, as required.

From now on, suppose that G has less than δnv(H) bi-induced copies of H. We apply Theorem 4.7
to get an ε-homogeneous equipartition P = {V1, . . . , Vt}, and then apply Theorem 4.7 again to find
an ε′-homogeneous equipartition Q which refines6 P, where ε′ is small enough (but still polynomial)
in terms of ε and t; i.e., ε′ = (ε/t)C for a large constant C (depending on H). Then, for each
1 ≤ i ≤ t, sample Ui ∈ Q uniformly at random among all parts of Q which are contained in Vi. One
can show that due to the choice of ε′, the following holds with positive probability:

5For the sake of keeping the presentation simple, we will not choose δ explicitly. Rather, δ is the number given
by Theorem 4.7; we will apply this theorem several times with different parameters, and δ is the minimum of the
resulting numbers.

6While this is not part of the statement of Theorem 4.7, the theorem can be reproved to allow for a partition P as
part of the input, such that the outputted equipartition refines P.
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(i) For every 1 ≤ i < j ≤ t, (Ui, Uj) is ε
′-homogeneous; i.e., d(Ui, Uj) ≤ ε′ or d(Ui, Uj) ≥ 1− ε′.

(ii) For all but
√
εt2 of the pairs 1 ≤ i < j ≤ t, it holds that |d(Ui, Uj)− d(Vi, Vj)| ≤ 10

√
ε.

The next step is as follows: For each i ∈ [t], apply Theorem 4.7 to G[Ui] to get an ε-homogeneous
equipartition Ri of Ui. Recall that this means that all but ε|Ri|2 of the pairs of parts in Ri are
ε-homogeneous (have density at most ε or at least 1 − ε). Apply Turán’s theorem to pass to R′

i ⊆
Ri of size roughly |R′

i| ≈ 1
ε such that any two parts in R′

i are ε-homogeneous, and then apply
Ramsey’s theorem to find R′′

i = {Ui,1, . . . , Ui,h} ⊆ R′
i such that either d(Ui,k, Ui,ℓ) ≤ ε for all

1 ≤ k < ℓ ≤ h or d(Ui,k, Ui,ℓ) ≥ 1 − ε for all 1 ≤ k < ℓ ≤ h.7 Another important point is that
since (Ui, Uj) is ε′-homogeneous and ε′ is very small (but still polynomial) compared to ε, we have
|d(Ui,k, Uj,ℓ)− d(Ui, Uj)| ≤ ε for all 1 ≤ i < j ≤ t and k, ℓ ∈ [h].

We now achieved the setting described by Items 1-4 in Section 3. Now clean the graph as described
in that section. One then shows that if the cleaned graph has an induced copy of some F ∈ H, then
the original graph has many (i.e., δnv(F )) such induced copies. ■

Gishboliner and Shapira also proved that if a finiteH contains no bipartite graph or no co-bipartite
graph, then the induced-H removal lemma is not polynomial (this proof uses similar constructions
to those used in Section 2). The following remains open:

Problem 4.10. Characterize the finite graph-families H for which the induced-H removal lemma is
polynomial.

This is of course a special case of Problem 3.3. The first open case is again H = {C4}. Note that
C4 is both bipartite and co-bipartite, but not split, so the aforementioned results of Gishboliner and
Shapira do not apply.

7Here h can be chosen as h = maxF∈F v(F ).
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