
Removal Lemmas: Summer School 2025

5 Property testing

Let us consider the following equivalent form of the infinite removal lemma:

Theorem 5.1 (Infinite removal lemma, sampling formulation). Let H be a family of graphs. For
every ε > 0 there is an integer q = qH(ε) such that if G is ε-far from induced H-free, then with
probability at least 0.99, a sample of q vertices from G is not induced H-free.

To see that the above follows from Theorem 3.2, note that a sample of m = mH(ε) vertices
contains an induced copy of H ∈ H with probability at least δ = δH(ε), so a sample of q = Cm/δ
contains such a copy with probability tending to 1 as C tends to infinity. The reverse direction is
also true, i.e., that Theorem 5.1 implies Theorem 3.2 (this is left as an exercise for the reader), and
q depends polynomially on m, 1/δ.

Theorem 5.1 leads to the notion of property testing. A property tester for a graph property P is a
randomized algorithm that distinguishes between graphs which satisfy P and graphs that are ε-far
from P, with success probability at least 0.99 (say) in both cases. Namely, if an input G satisfies P
then the algorithm must accept G with probability at least 0.99, and if G is ε-far from P then the
algorithm must reject P with probability at least 0.99.1 The algorithm works by sampling vertices
and making edge queries, i.e., asking if a pair of vertices u, v forms an edge. We require that the
sample complexity of the algorithm, i.e., the number of vertices it samples, depends only on ε and
not on the size of the input graph G.

Property testing originated in the 1990s, and has since been thoroughly studied. The model we
discuss here is called the dense graph model. There are also other models of property testing, e.g.,
for constant-degree graphs.

If P is hereditary, i.e., closed under the removal of vertices2, then then there is a very simple tester
for P: Simply sample q vertices of the input graph G, and accept if and only if the subgraph induced
by the sample satisfies P. As the property is hereditary, if G satisfies P then the tester accepts with
probability 1.3 The fact that this algorithm is correct is simply the statement of Theorem 5.1.

One of the early and highly influential works on property testing is a paper of Goldreich, Gold-
wasser and Ron, where several natural graph properties were shown to be testable with polynomial
sample complexity. Two key examples are k-colorability and having an independent set of size at
least ρn (for a fixed ρ ∈ [0, 1]). Note that the latter is not a hereditary property. To illustrate some
of the ideas in this work, let us show that bipartiteness is testable with sample complexity poly(1/ε).

1In the intermediate range – i.e. that G doesn’t satisfy P but is ε-close to it – there is no requirement on the
algorithm.

2Note that a graph property is hereditary if and only if it is defined in terms of a (possibly infinite) family of
forbidden induced subgraphs.

3Accepting inputs satisfying P with probability 1 is known as having one-sided error.
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Theorem 5.2 (Goldreich-Goldwasser-Ron 1998). If G is ε-far from being bipartite then a sample of
q = Õ(1/ε2) vertices of G induces a non-bipartite graph with probability at least 0.9.

Proof. First, by deleting at most ε
2n

2 edges, we may pass to a (spanning) subgraph of G where every
vertex has degree 0 or at least ε

2n. Indeed, as long as there is a vertex v with degree at least 1 but
less than ε

2n, delete all edges touching v. Note that the remaining graph (after the edge deletions) is
ε
2 -far from bipartiteness (because G is ε-far from bipartiteness). Let U be the set of vertices which
are not isolated.

The key idea is to sample in two stages. First, sample vertices x1, . . . , xs, s = 2
ε log(

100
ε ). For a

vertex u ∈ U , the probability that u has no neighbors in X = {x1, . . . , xs} is at most(
1− ε

2

)s
≤ e−εs/2 ≤ ε

100
.

Let U ′ be the set of u ∈ U which have a neighbor in X. By the above and Markov’s inequality, with
probability at least 0.95 we have |U ′| ≥ |U | − ε

5n. Make the vertices in U \U ′ isolated by deleting at
most additional ε

5n
2 edges.

If G[X] is not bipartite then we are already done. Otherwise, fix any bipartition (A1, A2) of G[X].
For i = 1, 2, let Ui be the set of all vertices u ∈ U ′ which have a neighbor in Ai (if u has a neighbor
in both A1, A2 then place u in one of the sets U1, U2 arbitrarily). Then U ′ = U1 ∪ U2. Also, every
vertex of G which is not currently isolated belongs to U1 ∪U2. As the remaining graph is ε

4 -far from
bipartiteness, there are at least ε

4n
2 edges which are inside U1 or inside U2. Now sample additional

vertices Y = {y1, . . . , yt}, t = 100s
ε = Õ(1/ε2). Note that if we sample any of the edges inside U1

or U2, then the bipartition (A1, A2) of G[X] cannot be extended to a bipartition of G[X ∪ Y ]. The
probability that we sample no such edge is at most(

1− ε

4

)t/2
≤ e−εt/8 < 0.05 · 2−s.

By taking a union bound over all at most 2s bipartitions (A1, A2) of G[X], we see that the probability
that G[X ∪ Y ] is bipartite is at most 0.1, as required. ■

We note that the bound on q in Theorem 5.2 has been improved to Õ(1/ε), which is optimal up
to the logarithmic terms. Also, such a bound has been proved for much more general testing tasks,
such as testing hypergraph k-colorability and (more generally) testing satisfiability.

We now move on to testing for independent sets; more precisely, for the property of containing
an independent set of size at least ρn. As mentioned above, this property was shown to be testable
already by Goldreich, Goldwasser and Ron. However, very recently, a new proof was discovered
by Blais and Seth, which uses the container method and supplies optimal bounds on the sample
complexity of such a tester. Here we present a version of their argument with somewhat weaker
bounds, for the sake of simplicity.

Theorem 5.3 (Blais-Seth 2023). Let G be an n-vertex graph which is ε-far from containing an
independent set of size at least ρn. Then with probability at least 0.9, a sample X = {x1, . . . , xq} of
q = Õ(1/ε3) vertices from G satisfies that α(G[X]) ≤ (ρ− ε

4)q.

Proof. The assumption on G implies that every vertex-set U ⊆ V (G) of size at least ρn contains
at least εn2 edges. But in fact we can get a bit more: every vertex set U of size at least (ρ − ε

2)n
contains at least ε

2n
2 edges. Indeed, otherwise, add arbitrary ε

2n vertices to U , delete all (at most
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ε
2n

2 edges) touching these vertices, and delete all edges inside U . This gives an independent set of
size at least ρn, in contradiction to our assumption.

The key part of the argument is the following claim, which uses the container algorithm:

Claim 5.4. Set t := 1
ε . For every independent set I ⊆ V (G) with |I| > t, there are sets F = F (I) ⊆ I

and C = C(I) ⊆ V (G) such that I ⊆ F ∪ C, |F | ≤ t and |C| ≤ (ρ − ε
2)n. Furthermore, C depends

only on F (and not on I). More precisely, if F = F (I), then C(I) = C(F ).4

Proof. The container algorithm is as follows: Initialize F0 = ∅ and C0 = V (G). For i ≥ 0, if
|Ci| ≤ (ρ− ε

2)n or Ci ∩ I = ∅, then stop and output F := Fi, C := Ci. Otherwise proceed as follows:

1. Order the elements of Ci as v1, . . . , vm, such that for every 1 ≤ j ≤ m, vj has maximum degree
in G[{vj , . . . , vm}].5

2. Let 1 ≤ j ≤ m be minimal with vj ∈ I.

3. Move vj to F , and delete from Ci the vertices v1, . . . , vj and all neighbors of vj in {vj+1, . . . , vm}.
Namely, set

Fi+1 = Fi ∪ {vj}

Ci+1 = Ci \ {vk : k ≤ j or vjvk ∈ E}.

It is easy to see that Fi ⊆ I and I ⊆ Fi ∪ Ci throughout the process, and the upper bound |C| ≤
(ρ− ε

2)n is guaranteed by the process. The fact that C depends only on F is a standard fact about
the container algorithm, and is left for the reader. It now suffices to show that the process stops in at
most t steps, as this would guarantee the upper bound on F . Suppose otherwise. Consider any step i
in the process except the last. Since the process did not stop at step i+1, we have |Ci+1| ≥ (ρ− ε

2)n.
Considering the ordering v1, . . . , vm at step i (see Item 1 above), we have Ci+1 ⊆ {vj+1, . . . , vm},
so in particular, the set U := {vj , . . . , vm} has size at least (ρ − ε

2)n. As explained above, this
means that U contains at least ε

2n
2 edges. As vj is chosen as a vertex of maximum degree in G[U ],

we have dU (vj) ≥ εn. Hence, at least εn vertices are removed from Ci at this step. As this is
true for every step except the last, and we assumed that the process lasts at least t steps, we get
|Ct−1| ≤ n− (t− 1) · εn < (ρ− ε

2)n, a contradiction to the assumption that the process did not stop
before step t. ■

Let us now prove Theorem 5.3. Sample vertices X = {x1, . . . , xq} uniformly at random and
independently.6 We need to upper-bound the probability that G[X] contains an independent set
of size at least (ρ − ε

4)q. Fix any such set I, and let F = F (I) and C = C(F ) be given by
Claim 5.4. If I ⊆ X, then F ⊆ X and X contains at least |I| − |F | vertices of C. Note that
|I| − |F | ≥ (ρ − ε

4)q − 1
ε ≥ (ρ − ε

3)q (provided that ε is small enough). Thus, we see that if
α(G[X]) ≥ (ρ − ε

4)q, then there is a set F ⊆ X = {x1, . . . , xq} such that |X ∩ C(F )| ≥ (ρ − ε
3)q.

We union bound over the choice of indices in [q] which play the role of F , and then condition on
the outcome of these indices (i.e., we condition on F ). The number of choices for the index set is(
q
≤t

)
≤ eO( 1

ε
log q). Having conditioned on F and setting C = C(F ), the random variable |X ∩ C| is

4The set F is usually called the fingerprint of I, and the set C is called the container corresponding to F .
5If two vertices have the same degree, then ties are broken according to a pre-fixed ordering on V (G).
6Here we sample with repetition for the sake of simplicity. Alternatively, one can sample a subset X ⊆ V (G) of size

q uniformly at random and use concentration inequalities for the hypergeometric distribution.
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distributed as Bin(q, |C|/n), and so has expectation at most (ρ− ε
2)q. By Hoeffding’s inequality, the

probability that |X ∩ C| ≥ (ρ− ε
3)q is at most e−Ω(qε2). Combining the above, we see that

P
[
α(G[X]) ≥

(
ρ− ε

4

)
q
]
≤ eO( 1

ε
log q) · e−Ω(qε2),

which is less than 0.1 if q = C
ε3

log 1
ε for a large enough constant C. ■

Using Theorem 5.3, we can now obtain a tester for large independent sets.

Theorem 5.5 (Golreich-Goldwasser-Ron 1998, Blais-Seth 2023 (optimal bound)). The property of
containing an independent set of size at least ρn is testable with sample complexity poly(1/ε).

Proof. The algorithm samples vertices X = {x1, . . . , xq}, where q = Õ(1/ε3) is given by Theorem
5.3, and accepts if and only if α(G[X]) > (ρ− ε

4)q. If G has an independent set I of size at least ρn,
then one can show using Hoeffding’s inequality that |X ∩ I| > (ρ− ε

4)q with probability at least 0.9.
And if G is ε-far from containing an independent set of size at least ρn, then α(G[X]) ≤ (ρ − ε

4)q
with probability at least 0.9 by Theorem 5.3. ■

6 Hypergraph regularity and VC-dimension for hypergraphs

In this section we consider the extensions of the notions of regularity and VC-dimension to hyper-
graphs. For simplicity, we consider 3-uniform hypergraphs, but all material covered in this section
extends to higher uniformity.

6.1 Regularity

What is the appropriate notion of regularity for 3-uniform hypergraphs? A natural attempt is as
follows: A 3-partite 3-graph H = (X,Y, Z) is ε-regular if for every X ′ ⊆ X,Y ′ ⊆ Y, Z ′ ⊆ Z with
|X′|
|X| ,

|Y ′|
|Y | ,

|Z′|
|Z| ≥ ε, it holds that |d(X ′, Y ′, Z ′)− d(X,Y, Z)| ≤ ε, where

d(X,Y, Z) :=
e(X,Y, Z)

|X||Y ||Z|

is the density of (X,Y, Z). This notion of regularity is called weak regularity (for reasons that we shall
see shortly). One can indeed prove a regularity lemma with respect to this notion; the statement
and its proof are straightforward generalizations of Szemerédi’s regularity lemma. The problem,
however, is that this notion of regularity is not strong enough to imply a counting lemma. To see
this, consider the following key example: Take random bipartite graphs E ⊆ X×Y , F ⊆ X×Z and
G ⊆ Y ×Z (with edge-probability 1

2 , say, though this will not be important). Define the hypergraph
H to consist of all triangles formed by E,F,G, i.e., xyz ∈ E(H) if xy ∈ E, xz ∈ F, yz ∈ G. This
hypergraph H is weakly regular. Indeed, for all linear-sized sets X ′ ⊆ X,Y ′ ⊆ Y,Z ′ ⊆ Z, the
density of triangles between (X ′, Y ′, Z ′) is very close to that of (X,Y, Z), because the graphs E,F,G
are random. However, H does not contain a tri-induced copy of every fixed-size 3-partite 3-graph.7

Indeed, let K be the 3-partite 3-graph obtained from K
(3)
2,2,2 by deleting one edge. If, by contradiction,

7A tri-induced copy of a 3-partite 3-graph K = (A,B,C) is defined in the natural way: it is an injection φ : V (K) →
V (H) such that φ(A) ⊆ X,φ(B) ⊆ Y, φ(C) ⊆ Z, and for every (a, b, c) ∈ A × B × C, abc ∈ E(K) if and only if
φ(a)φ(b)φ(c) ∈ E(H).
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x1, x2, y1, y2, z1, z2 form a tri-induced copy of K in H (with x1, x2 ∈ X and so on), then all pairs xiyj
(1 ≤ i, j ≤ 2) belong to E, and similarly all pairs xizj belong to F and all pairs yizj to G. But then

this is a copy of K
(3)
2,2,2 instead of an induced copy of K. So we see that the analogue of Lemma 1.7

fails for weak regularity.8

Let us now introduce a stronger notion of regularity which does admit a counting lemma. Consider
a tripartite graph with parts X,Y, Z consisting of E ⊆ X × Y , F ⊆ X × Z and G ⊆ Y × Z. Let
△(E,F,G) denote the set of triangles in G, i.e., the set of triples (x, y, z) ∈ X × Y × Z with
xy ∈ E, xz ∈ F, yz ∈ G. Now let H be a 3-partite 3-graph on X,Y, Z. The density of H with respect
to (E,F,G) is defined as

d(H | E,F,G) :=
|E(H) ∩△(E,F,G)|

|△(E,F,G)|
.

Namely, the density is the fraction of (E,F,G)-triangles which are edges of H. The definition of
regularity in the 3-graph regularity lemma is with respect to this density. That is, we require that
for every E′ ⊆ E,F ′ ⊆ F,G′ ⊆ G, if △(E′, F ′, G′) ≥ ε△(E,F,G), it holds that∣∣d(H | E′, F ′, G′)− d(H | E,F,G)

∣∣ ≤ ε.

In fact, the known proof of the 3-graph counting lemma requires a somewhat stronger version
of the above: We say that H is (ε, r)-regular with respect to (E,F,G) if for every E1, . . . , Er ⊆
E,F1, . . . , Fr ⊆ F,G1, . . . , Gr ∈ G with

∑r
i=1△(Ei, Fi, Gi) ≥ ε△(E,F,G), it holds that∣∣∣∣ |E(H) ∩

⋃r
i=1△(Ei, Fi, Gi)|

|
⋃r

i=1△(Ei, Fi, Gi)|
− d(H | E,F,G)

∣∣∣∣ ≤ ε.

In order to make use of the ε-regularity of H with respect to (E,F,G), we have to be able to
count the (E,F,G)-triangles. To this end, we require that the bipartite graphs E,F,G themselves
are regular.9

The 3-graph regularity lemma supplies vertex partitions10 of X,Y, Z as well as pair partitions
of X ′ × Y ′, X ′ × Z ′, Y ′ × Z ′ for any choice of vertex-parts X ′ ⊆ X,Y ′ ⊆ Y,Z ′ ⊆ Z. The lemma
guarantees that for “most”11 choices of vertex-parts X ′, Y ′, Z ′ and pair-parts E ⊆ X ′ × Y ′, F ⊆
X ′ × Z ′, G ⊆ Y ′ × Z ′, it holds that E,F,G are δ-regular (for a suitable small enough δ) and H is
(ε, r)-regular with respect to E,F,G.12

Just as in the graph case, the proof of the 3-graph regularity lemma proceeds via density increment:
if H is not ε-regular with respect to many triples of pair-parts (E,F,G), then one can refine the
pair partition and thus increase the energy function. One then needs to apply the graph regularity
lemma to the new pair parts to maintain the property that all pair parts are regular. This in turn
refines the vertex partition. The repeated applications of graph regularity result in a Wowzer-type
bound. The wowzer function is the iterated tower function, i.e., wowzer(x) = tower(wowzer(x− 1)).

8Another classical example to the counting lemma failing is as follows. Take a random tournament T on n vertices,
and consider the 3-uniform hypergraph H on V (T ) whose edges are the cyclic triangles in T . It can be shown that H
is weakly-regular (due to the fact that T is random), but any 4 vertices of H contain at most 2 edges (because any 4

vertices in a tournament contain at most 2 cyclic triangles). In particular, H does not contain K
(3)
4 (or even K

(3)
4 − e).

9I.e., they should be regular enough so that we may apply the graph counting lemma (Lemma 1.3). This means
that the degree of regularity should be small enough as a function of the densities of E,F,G.

10The goal of the vertex partitions is to make the parts of the pair partitions regular.
11“Most” means the following: If we sample (x, y, z) ∈ X × Y × Z uniformly at random and consider the unique

vertex- and pair-parts containing (x, y, z), then these have the desired property with probability at least 1−ε. In other

words, (E,F,G) is weighted by |△(E,F,G)|
|X||Y ||Z| .

12For the proof of the counting lemma, the parameter r must also depend on (i.e., be large enough with respect to)
the densities of E,F,G.
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6.2 VC-dimension

Recall that a shattered set in a graph is a vertex-set X = {x1, . . . , xd} such that for every I ⊆ [d],
there is a vertex yI such that {i ∈ [d] : xiyI ∈ E} = I. In 3-uniform hypergraphs, a shattered set
will consist of pairs instead of vertices; the rest of the definition is very similar. Namely, a set of
pairs {e1, . . . , ed} in a 3-graph H (so ei ∈

(
V (H)

2

)
for every 1 ≤ i ≤ d) is shattered if for every I ⊆ [d],

there is a vertex yI ∈ V (H) such that ei ∪ {yI} ∈ E(H) if and only if i ∈ I.

As e1, . . . , ed are now pairs (instead of vertices), they themselves carry structure, i.e., of a graph.
Hence, we can have different definitions of VC-dimension depending on the structure of shattered
sets which we are considering.

Definition 6.1. text

1. The strong VC-dimension of H is the maximum size of a shattered set of pairs e1, . . . , ed (here
there are no restrictions on e1, . . . , ed).

13

2. The VC1-dimension (also known as slicewise VC-dimension) of H is the maximum size of a
shattered set e1, . . . , ed which forms a star.

3. The VC2-dimension of H is the maximum size of a shattered set e1, . . . , ed which forms a
complete bipartite graph.

For convenience, in what follows we often consider 3-partite 3-graphs (instead of general 3-graphs),
but all material applies to general 3-graphs as well.

Fox, Pach and Suk proved that hypergraphs with bounded strong VC-dimension have small ho-
mogeneous partitions:

Theorem 6.2 (Fox-Pach-Suk 2019). If H = (X,Y, Z) has strong VC-dimension d, then it has
an ε-homogeneous equipartition of size at most (1/ε)O(d). Namely, there are equipartitions X =
X1 ∪ · · · ∪Xt, Y = Y1 ∪ · · · ∪ Yt, Z = Z1 ∪ · · · ∪Zt, where t ≤ (1/ε)O(d), such that for all but at most
εt3 of the triples (i, j, k) ∈ [t]3 it holds that d(Xi, Yj , Zk) ≤ ε or d(Xi, Yj , Zk) ≥ 1− ε.

Thus, strong VC-dimension behaves similarly to the graph case.

Let us now consider VC1- and VC2-dimension. Note that if a hypergraph H has unbounded VC2-
dimension, then it contains a tri-induced copy of every 3-partite 3-graph K = (A,B,C). Indeed, first
map A×B onto a shattered complete bipartite graph, denoting the mapping by φ, and then, for every
c ∈ C, take a vertex zc ∈ V (H) which makes an edge precisely with the pairs {φ(a)φ(b) : abc ∈ E(K)}.
Thus, in this sense, VC2-dimension is analogous to the graph case: bounded VC2-dimension is
equivalent to excluding tri-induced copies of a fixed 3-partite 3-graph, just as bounded (graph)
VC-dimension is equivalent to excluding bi-induced copies of a fixed bipartite graph. By the same
considerations, bounded VC1-dimension is equivalent to excluding tri-induced copies of a fixed 3-
partite 3-graph K = (A,B,C) where |A| = 1. In other words, bounded VC1-dimension is equivalent
to all link graphs having bounded VC-dimension.14

It turns out that bounded VC1-dimension (which is a weaker assumption than bounded strong
VC-dimension) also implies the existence of ε-homogeneous vertex-partitions. This was first proved
by Chernikov and Towsner, without any quantitative bound on the size of the partition. A double
exponential bound 22

poly(1/ε)
was subsequently proved by Terry. Very recently, this was improved to

an exponential bound:

13The term “strong VC-dimension” is not standard. I have not found a better name for this definition.
14The link LH(x) of a vertex x is the graph {yz : xyz ∈ E(H}.
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Theorem 6.3 (Gishboliner-Shapira-Wigderson). If H = (X,Y, Z) has bounded VC1-dimension, then
it has an ε-homogeneous equipartition of size at most 2poly(1/ε).

A construction by Terry shows that an exponential bound is best possible.15 The following remains
open:

Conjecture 6.4. If H = (X,Y, Z) has bounded VC1-dimension, then there are X ′ ⊆ X,Y ′ ⊆ Y,Z ′ ⊆
Z with |X′|

|X| ,
|Y ′|
|Y | ,

|Z′|
|Z| ≥ poly(ε) such that d(X ′, Y ′, Z ′) ≤ ε or d(X ′, Y ′, Z ′) ≥ 1− ε.

Proof sketch of Theorem 6.3. For simplicity, suppose that |X| = |Y | = |Z| = n. Fix any pair
(x, y) ∈ X × Y . Consider the link LH(x), which is a bipartite graph between Y and Z. As H has
bounded VC1-dimension, LH(x) has bounded VC-dimension. Hence, by (the bipartite version of)

Lemma 4.4, there is a partition Y = Y
(x)
1 ∪ · · · ∪ Y

(x)
s , s = poly(1/ε), such that two vertices y1, y2

in the same part satisfy |NZ(y1)△NZ(y2)| ≤ εn, where the neighborhoods are in LH(x). In other
words, |NZ(x, y1)△NZ(x, y2)| ≤ εn, where the neighborhoods are in H. For simplicity, suppose

that the partition Y
(x)
1 ∪ · · · ∪ Y

(x)
s is an equipartition (this can be easily arranged by allowing one

exceptional part). Also, without loss of generality, suppose that y ∈ Y
(x)
1 . Pick any y′ ∈ Y

(x)
1 , and

now consider LH(y), which is a bipartite graph between X and Z. By the same argument as above,

we get an equipartition X = X
(y′)
1 ∪ X

(y′)
s such that two vertices x1, x2 in the same part satisfy

|NZ(x1, y
′)△NZ(x2, y

′)| ≤ εn. Without loss of generality, x ∈ X
(y′)
1 . Now, for every x′ ∈ X

(y′)
1 , we

have, by the triangle inequality:

|NZ(x
′, y′)△NZ(x, y)| ≤ |NZ(x

′, y′)△NZ(x, y
′)|+ |NZ(x, y

′)△NZ(x, y)| ≤ 2εn.

Also, the number of choices for (x′, y′) is (n/s)2. Summarizing, for every pair16 (x, y) ∈ X×Y , there
are at least (n/s)2 pairs (x′, y′) ∈ X × Y with |NZ(x

′, y′)△NZ(x, y)| ≤ 2εn.

Now sample f1, . . . , fr ∈ X × Y uniformly at random, where r = s2 log 1
ε , and define Ei :=

{(x, y) ∈ X × Y : |NZ(x, y)△NZ(fi)| ≤ 2εn}. For every i ∈ [r], very two pairs in Fi have the same
neighborhood in Z, up to an error of 4εn (by the triangle inequality). Also, for a given (x, y) ∈ X×Y ,
we have

P[(x, y) /∈ E1 ∪ · · · ∪ Er] ≤
(
1− 1

s2

)r

≤ ε.

In conclusion, we get a partition X × Y = E0 ∪ E1 ∪ · · · ∪ Er such that |E0| ≤ εn2, and for every
i ∈ [r] and (x, y) ∈ Ei, |NZ(x, y)△NZ(fi)| ≤ 2εn.

Now, let Zi := NZ(fi), and let PZ be the Venn diagram of the sets Z1, . . . , Zr. This is a partition of
Z into at most 2r = 2poly(1/ε) sets.17 We expect a homogeneous behavior between each Ei (1 ≤ i ≤ r)
and a typical part of PZ .

The proof proceeds by repeating the above argument for X×Z and Y ×Z. In the former case we
obtain a partition of X × Z and a partition PY of Y , and in the latter case we obtain a partition of
Y ×Z and a partition PX of X. One can now show that (PX ,PY ,PZ) is an ε-homogeneous partition
of H.18 We omit the details. ■

15This construction is as follows: Partition X,Y into equal-sized parts X1, . . . , Xk and Y1, . . . , Yk, respectively, where
k = (1/ε)0.1, say. For each i = 1, . . . , k, take a uniformly random subset Zi ⊆ Z and add all edges in Xi × Yi × Zi

(the sets Z1, . . . , Zk are chosen independently). One can show that any ε-homogeneous partition of this hypergraph

has size at least 2(1/ε)
Ω(1)

.
16In fact, we can only guarantee this for almost every pair, because of the aforementioned exceptional sets. But we

ignore this technicality.
17This step is where the exponential bound in Theorem 6.3 comes from.
18More precisely, ε′-homogeneous for some ε′ = εc, c > 0 constant.
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Moving to VC2-dimension, what can we say about a hypergraph with bounded VC2-dimension?
Recall the construction described in Section 6.1 (arising from random graphs). This construction
has bounded VC2-dimension but no ε-homogeneous partition (even for ε = 0.49) of size independent
of n. So bounded VC2-dimension does not imply the existence of (bounded-size) ε-homogeneous
vertex partitions. Observe, however, that this construction does have a homogeneous pair partition:
Partition X×Y into E1 := E,E2 := X×Y \E, and similarly partition X×Z into F1, F2 and Y ×Z
into G1, G2. Then for every i, j, k = 1, 2, the hypergraph H is homogeneous (i.e., complete or empty)
over △(Ei, Fj , Gk). It turns out that this is a general phenomenon:

Theorem 6.5 (Chernikov-Towsner 2020). If H = (X,Y, Z) has bounded VC2-dimension, then there
are equipartitions X×Y = E1∪· · ·∪Et, X×Z = F1∪· · ·∪Ft, Y ×Z = G1∪· · ·∪Gt, where t depends
only on ε, such that for all but εt3 of the triples (Ei, Fj , Gk) it holds that d(H | Ei, Fj , Gk) ≤ ε or
d(H | Ei, Fj , Gk) ≥ 1− ε.

Theorem 6.5 can be deduced from the hypergraph regularity lemma, as follows: Taking a regular
partition, one can show that for a regular triple (Ei, Fj , Gk), the density of H over △(Ei, Fj , Gk) is
at most ε or at least 1− ε. Indeed, otherwise H contains a tri-induced copy of every fixed 3-partite
3-graph, by a counting lemma analogous to Lemma 1.7.

In fact, the result of Chernikov and Towsner is more general. For each uniformity k ≥ 2 and
1 ≤ ℓ ≤ k − 1, they define a suitable notion of VCℓ-dimension, and show that a k-graph with
bounded VCℓ-dimension has an ε-homogeneous partition of uniformity ℓ, i.e., a partition of all ℓ-sets.

Problem 6.6. Does Theorem 6.5 hold with t = poly(1/ε)?
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