
Removal Lemmas: Summer School 2025

1 The regularity and removal lemmas

The graph removal lemma is the following statement:

Theorem 1.1 (Graph removal lemma, Ruzsa-Szemerédi ’78). Let H be a fixed graph. For every
ε > 0 there is δ = δH(ε) > 0 such that if an n-vertex graph G has at most δnv(H) copies of H, then
G can be made H-free by deleting at most εn2 edges.

Remarks:

• We say that G is ε-far from being H-free if one has to delete at least εn2 edges to turn G into
an H-free graph. The contrapositive is that if G is ε-far from H-free then G has at least δnv(H)

copies of H.

• Being ε-far from H-free is equivalent to having a collection of Θ(ε)n2 edge-disjoint copies of
H. Indeed, if G has such a collection of size εn2, then G is ε-far (because we have to delete at
least one edge from each H-copy in order to destroy all H-copies in G). In the other direction,
take a maximal collection of edge-disjoint copies of H in G. Deleting all edges of these copies
makes the graph H-free (because of the maximality of the collection). Thus, if the maximal
such collection has size less than ε

e(H)n
2, then G is not ε-far.

The removal lemma is proved using Szemerédi’s regularity lemma, which we now recall. Consider
a bipartite graph with parts X,Y . The density is d(X,Y ) := e(X,Y )

|X||Y | .

Definition 1.2 (Regular pair). A bipartite graph (X,Y ) is ε-regular if for every X ′ ⊆ X,Y ′ ⊆ Y
with |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, it holds that |d(X ′, Y ′)− d(X,Y )| ≤ ε.

Regular pairs are “random-like”. Indeed, the definition captures a key property of random graphs:
uniform edge distribution. Another key random-like property of regular pairs is given by the counting
lemma:

Lemma 1.3 (Counting lemma). For every ε > 0 there is γ > 0 such that if V1, . . . , Vr are disjoint
vertex sets such that all pairs (Vi, Vj) are ε-regular, then the number of r-cliques v1, . . . , vr (with
vi ∈ Vi) is

r∏
i=1

|Vi| ·

 ∏
1≤i<j≤r

d(Vi, Vj)± γ

 . (1)

Note that (1) (with the error γ omitted) is precisely the expected number of r-cliques if the edges
between Vi and Vj were chosen randomly with probability d(Vi, Vj), for every 1 ≤ i < j ≤ r. In
many applications, it suffices to have a lower bound for the number of r-cliques. To illustrate how
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the proof of the counting lemma works, let us prove such a statement in the case r = 3 (the proof
for general r is similar, via induction). We will assume that all densities d(Vi, Vj) are large enough
in terms of ε.1

Lemma 1.4. For every d > 0 there is ε = d/2 so that if V1, V2, V3 are such that d(Vi, Vj) ≥ d and
(Vi, Vj) is ε-regular for every 1 ≤ i < j ≤ 3, then there are at least (d3 − 4ε)|V1||V2||V3| triangles.

Proof. First we need the following simple property of regular pairs. The proof is left to the reader.

Claim 1.5. Let (X,Y ) be an ε-regular pair with density d = d(X,Y ). Then at most ε|X| of the
vertices x ∈ X satisfy dY (x)

|Y | < d− ε, and at most ε|X| of the vertices x ∈ X satisfy dY (x)
|Y | > d+ ε.

Now we prove Lemma 1.4. For i = 1, 2, let Bi be the set of vertices v ∈ V3 with dVi(v) < (d−ε)|Vi|.
By Claim 1.5, we have |Bi| ≤ ε|V3|. So |B1 ∪ B2| ≤ 2ε|V3|. For each v ∈ V3 \ (B1 ∪ B2), consider
U1 := NV1(v) and U2 := NV2(v). As v /∈ B1 ∪ B2, we have |U1| ≥ (d − ε)|V1| ≥ ε|V1| and similarly
|U2| ≥ ε|V2|. By the regularity of (V1, V2), we have d(U1, U2) ≥ d − ε, and therefore e(U1, U2) ≥
(d − ε)|U1||U2| ≥ (d − ε)3|V1||V2|. Each edge in E(U1, U2) creates a triangle with v. Doing this for
all (at least (1 − ε)|V3|) choices of v ∈ V3 \ (B1 ∪ B2), we get at least (1 − ε)(d − ε)3|V1||V2||V3| ≥
(d3 − 4ε)|V1||V2||V3| triangles, as required. ■

Another version of the counting lemma we will use is as follows.

Definition 1.6 (bi-induced copy). A bi-induced copy of a bipartite graph H = (A,B) in a graph
G is an injection φ : V (H) → V (G) such that for every a ∈ A, b ∈ B, ab ∈ E(H) if and only if
φ(a)φ(b) ∈ E(G). If G is itself bipartite with parts X,Y , then we also require that φ(A) ⊆ X and
φ(B) ⊆ Y .

Note that in the above definition we do not make requirements on the edges inside φ(A) and φ(B).

Lemma 1.7. For every integer k and d > 0, there is ε > 0 such that the following holds. Consider
a bipartite graph (X,Y ) and suppose that d ≤ d(X,Y ) ≤ 1− d and (X,Y ) is ε-regular. Then (X,Y )
contains a bi-induced copy of every bipartite graph (A,B) with |A|, |B| ≤ k.

One can deduce the above lemma from Lemma 1.3 as follows: Suppose that A = {a1, . . . , ak},
B = {b1, . . . , bk}. Split X into equal parts X1, . . . , Xk and Y into equal parts Y1, . . . , Yk. Define an
auxiliary graph as follows: If aibj ∈ E then take the edges of G between Xi, Yj , and if aibj /∈ E then
take the non-edges of G between Xi, Yj . Now apply Lemma 1.3 to this auxiliary graph.

The Szemerédi regularity lemma states that any graph has a vertex partition into a bounded
number of parts, such that most pairs of parts are regular.

Theorem 1.8 (Szemerédi’s regularity lemma 1978). For every ε > 0 and t0 ≥ 1, there is T =
T (ε, t0) such that the following holds. Every graph G on n ≥ T vertices has an equipartition2

V (G) = V1 ∪ · · · ∪ Vt with t0 ≤ t ≤ T such that all but εt2 of the pairs (Vi, Vj), 1 ≤ i < j ≤ t, are
ε-regular.

An equipartition as in Theorem 1.8 is called ε-regular. Let us give a very rough sketch of the
proof of the regularity lemma.

1Otherwise, i.e. if some d(Vi, Vj) is smaller than γ, then it is easy to see that the statement of Lemma 1.3 holds
trivially (because the number of r-cliques is at most |V1| . . . |Vr|d(Vi, Vj)).

2An equipartition is a partition in which any two parts Vi, Vj satisfy ||Vi| − |Vj || ≤ 1.

2



Proof sketch of Theorem 1.8. For a partition P = {V1, . . . , Vt} of V (G), we define the mean
square density as

q(P) =
∑

1≤i<j≤t

|Vi||Vj |
n2

d2(Vi, Vj).

One shows that:

1. If Q is a refinement of P then q(Q) ≥ q(P).

2. If P is not ε-regular, then there is a refinement Q of P with q(Q) ≥ q(P) + ε5 and |Q| ≤ 2t · t,
where t = |P|.

A proof sketch for Item 2 is as follows: For each pair 1 ≤ i < j ≤ t such that (Vi, Vj) is not ε-regular,
take Vij ⊆ Vi, Vji ⊆ Vj such that |Vij | ≥ ε|Vi|, |Vji| ≥ ε|Vj |, and |d(Vij , Vji) − d(Vi, Vj)| > ε. Now,
for each 1 ≤ i ≤ t, take the common refinement (Venn diagram) of all sets (Vij : j). The resulting
partition is Q. It is easy to see that |Q| ≤ 2t · t, and one can show that q(Q) ≥ q(P) + ε5.

Using Items 1-2, one proves Theorem 1.8 as follows. Start with an arbitrary equipartition P0 into
t0 parts. If Pi is not ε-regular, use Item 2 to get a refinement Pi+1 with q(Pi+1) ≥ q(Pi) + ε5. As
q(P) ≤ 1 for any P, the process has to stop in at most 1

ε5
steps.

At each iteration, there is also an additional step of turning the partition Q given by Item 2 into
an equipartition, by chopping up the parts of Q into equal-sized sets. One can show that if the
set-size is small enough, this does not decrease q(Q) by much. ■

What is the bound on the partition-size T that we get in Theorem 1.8? The proof is via a
procedure that runs for poly(1/ε) steps, and at each step we replace a partition of size t with a
partition of size roughly 2t. Hence, the number of parts is at most tower(poly(1/ε), t0), where

tower(k, x) = 22
2·
··
2x

}
k times

I.e., the bound is of tower type. Gowers proved that this is inevitable.

Theorem 1.9 (Gowers 1997). There are graphs which require tower(ε−c) parts in any ε-regular
partition, where c > 0 is a constant.

Let us now prove the removal lemma (Theorem 1.1). For simplicity, we consider the case H = K3.

Proof of the triangle removal lemma. Let G be a graph which is γ-far from K3-free. Apply the
regularity lemma with parameters ε = γ/10 and t0 = 10/γ to obtain an ε-regular partition V1, . . . , Vt
with t0 ≤ t ≤ T . We now clean the graph. I.e., we delete the following edges:

1. All edges inside Vi for every 1 ≤ i ≤ t.

2. All edges between pairs (Vi, Vj) with d(Vi, Vj) ≤ 2ε.

3. All edges between pairs (Vi, Vj) which are not ε-regular.

The number of edges of type 1 is at most t ·
(
n/t
2

)
≤ n2

t ≤ γ
10n

2. The number of edges of type
2 is at most 2ε ·

∑
1≤i<j≤t |Vi||Vj | ≤ 2ε

(
n
2

)
≤ γ

5n
2. The number of edges of type 3 is at most

εt2 ·
(
n
t

)2
= εn2 = γ

10n
2. So the total number of deleted edges is less than γn2. As G is γ-far from

K3-free, the remaining graph (after the deletion of these edges) still has a triangle. This triangle
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cannot contain two vertices from the same part Vi (because of Item 1). So suppose that this triangle
has one vertex in each of the sets Vi, Vj , Vk. Then by Items 2-3, all pairs (Vi, Vj), (Vi, Vk), (Vj , Vk) are
ε-regular and have density at least 2ε. By Lemma 1.4, there are at least poly(ε)|Vi||Vj ||Vk| triangles.
Now, |Vi||Vj ||Vk| = (n/t)3 ≥ n3/T 3, so we can set δ := poly(ε)

T 3 . ■

Note that because of the tower-type parameter dependence in the regularity lemma, the above
proof gives a tower-type dependence for the removal lemma as well. Namely, it shows that in Theorem
1.1, we can take 1/δ = tower(poly(1/ε)). This was improved to tower(O(log 1

ε )) by Fox. It is a major
open problem to improve this further.

2 When is the removal lemma polynomial?

For which graphs H does it hold that the parameters in the H-removal lemma (Theorem 1.1) satisfy
δH(ε) = poly(ε)? A classical result in extremal graph theory, namely the Kővári-Sós-Turán theorem,
shows that this is the case if H is bipartite.

Theorem 2.1 (Kővári-Sós-Turán theorem, supersaturation form). An n-vertex graph with εn2 edges
contains at least poly(ε)ns+t copies of Ks,t.

Returning to the H-removal lemma for a bipartite H, observe that if G is ε-far from H-free then
G (trivially) contains at least εn2 edges, hence G contains poly(ε)nv(H) copies of H by Theorem 2.1.
Thus, if H is bipartite then the H-removal lemma is polynomial. Alon proved that the converse also
holds, i.e., that bipartite graphs are the only ones which admit a polynomial removal lemma.

Theorem 2.2 (Alon 2002). For a graph H, δH(ε) = poly(ε) if and only if H is bipartite.

We will first prove Theorem 2.2 in the case that H is an odd cycle. For this, we need a number-
theoretic construction.

Theorem 2.3. Let k ≥ 3. There is a set S ⊆ [n] with |S| ≥ n1−o(1), such that for every x1, . . . , xk ∈
S, if x1 + · · ·+ xk−1 = (k − 1)xk, then x1 = · · · = xk.

The case k = 3 is Behrend’s construction of a large set with no 3-term arithmetic progressions.
The general case is a straightforward generalization.

Proof of Theorem 2.3. Write n = dt for d, t to be chosen later. Represent the numbers 1, . . . , n
in base d. I.e., for x ∈ [n], write

x =

t−1∑
i=0

aid
i,

where 0 ≤ ai ≤ d− 1. Write v(x) := (a0, . . . , at−1). Let U be the set of all x for which a0, . . . , at−1 ≤
d−1
k−1 . This property guarantees that for x1, . . . , xk−1 ∈ U , we have

v(x1 + · · ·+ xk−1) = v(x1) + · · ·+ v(xk−1).

I.e., there is no carry when summing x1, . . . , xk−1. Similarly, v((k−1) ·xk) = (k−1) ·v(xk) for every
xk ∈ U .

Now fix r ≥ 1, to be chosen later, and take S to be the set of all x ∈ U with ∥v(x)∥ = r, where
∥·∥ is the Euclidean norm. Suppose that x1, . . . , xk ∈ S satisfy x1 + · · ·+ xk−1 = (k− 1)xk. Putting
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vi = v(xi), we get v1+ · · ·+ vk−1 = (k− 1)vk. Now we take norms. The norm of the RHS is (k− 1)r.

For the LHS, by Cauchy-Schwarz we have ∥v1+ · · ·+vk−1∥ ≤
√∑k−1

i=1 ∥vi∥2 ·
√
k − 1 = (k−1)r, with

equality if and only if v1 = · · · = vk−1. So we must have v1 = · · · = vk and hence x1 = · · · = xk.
3

Now we estimate the size of S. For every x ∈ [n], we have ∥x∥2 ≤ td2, so the number of choices
for r is at most td2. By pigeonhole, there exists r such that

|S| ≥ |U |
td2

≥ (d/k)t

td2
=

n

kttd2
.

Choose t, d such that kt = d. As dt = n, this gives t =
√

log(n)
log(k) , d = e

√
log(k) log(n). So

|S| ≥ n

eOk(
√
logn)

= n1−o(1).

■

Now we prove Theorem 2.2 for odd cycles.

Theorem 2.4. For every odd k ≥ 3, there exists an n-vertex graph G with εn2 edge-disjoint copies
of Ck, but only ε

ω(1)nk copies of Ck in total.

Proof. Let ε > 0. Let S ⊆ [n] be the set given by Theorem 2.3. Choose n such that |S| = εn.
As |S| = n1−o(1), this means that n = (1/ε)ω(1). Define a graph with k parts V1, . . . , Vk, each of
size kn and identified with [kn].4 For each y ∈ [n] and x ∈ S, add a copy of Ck on the vertices
v1 = y, v2 = y + x, v3 = y + 2x, . . . , vk = y + (k − 1)x (so vi = y + (i − 1)x) such that vi ∈ Vi.

5

Denote this copy by Cx,y. We claim that the copies Cx,y are edge-disjoint. Indeed, even stronger,
any two such copies share at most one vertex, because if Cx,y and Cx′,y′ have the same vertex in Vi
and Vj , then y + (i− 1)x = y′ + (i− 1)x′ and y + (j − 1)x = y′ + (j − 1)x′, and solving this system
of equations gives x = x′, y = y′. The number of copies Cx,y is n|S| ≥ εn2. Thus, the graph has a
collection of εn2 edge-disjoint copies of Ck.

Now we bound the total number of copies of Ck. Crucially, as k is odd, we can only have copies
of Ck of the form (v1, . . . , vk, v1) with vi ∈ Vi.

6 Now consider such a copy v1, . . . , vk. Then for each
1 ≤ i ≤ k − 1 there are yi, xi with vi, vi+1 ∈ Cxi,yi , and there are yk, xk with vk, v1 ∈ Cxk,yk . Then

x1 + · · ·+ xk−1 = vk − v1 = (k − 1)xk.

By the property of the set S, we get x1 = · · · = xk =: x (from which we can also deduce that
y1 = · · · = yk). So (v1, . . . , vk) ∈ Cx,y1 . This shows that any copy of Ck in the graph is one of the
“original” copies Cx,y we put in. Their number is

n|S| ≤ n2 ≤ |V (G)|k

n
≤ εω(1)|V (G)|k.

■
3What we are using here is that S is a sphere, and a sphere has no point in the convex hull of other points (unless

all points are equal.
4Thus, we are actually defining a graph on k2n vertices, but we can of course adjust the parameters.
5Note that we choose each Vi to be [kn] so that the numbers vi = y + (i− 1)x “fit” in Vi.
6What we are using here is that Ck is not homomorphic to any of its proper subgraphs.
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Remarks:

• We can take blowups of the graph defined in the proof of Theorem 2.4 to get constructions of
any (large enough) size.

• The above proof gives a connection between the triangle removal lemma and the problem of
estimating the largest possible size r3(n) of a subset of [n] with no 3-term arithmetic progression.
Indeed, in the proof, we use a lower bound on r3(n) (via Theorem 2.3) to show that the
triangle removal lemma is not polynomial. In the other direction, one can use the triangle
removal lemma to show that r3(n) = o(n), which is the statement of Roth’s theorem. We note,
however, that this gives a very poor quantitative bound of roughly r3(n) ≤ n/ log∗(n). Much
better bounds are known.

To prove Theorem 2.2 for a general non-bipartite H, we would like to use the same strategy as in
Theorem 2.4. Namely, if V (H) = {1, . . . , h}, we construct an H-partite graph with parts V1, . . . , Vh
and put a copy of H on y, y + x, . . . , y + (h − 1)x for y ∈ [n], x ∈ S. We will also use that H has
an odd cycle. The issue is that we want to make sure that every copy of H is of the form v1, . . . , vh
with vi ∈ Vi (and vi plays the role of i ∈ [h]). Note that the construction is homomorphic to H
via the homomorphism Vi 7→ i.7 Thus, what we want is that H has no homomorphism to a proper
subgraph of itself. This might not be true of H itself, but there is a maximal subgraph of H which
has this property, and we will exploit this for our construction. Let us now define this subgraph.

Definition 2.5. The core of H is the minimal subgraph K of H (in terms of the number of vertices)
such that there is a homomorphism from H to K.

We will show soon that the core is well defined, in the sense that K is unique up to isomorphism.
Observe that K is not homomorphic to any of its proper subgraphs. Indeed, if there is a homomor-
phism ψ : K → J for J with V (J) ⊊ V (K), then by taking a homomorphism φ : H → K, we get a
homomorphism ψ ◦ φ from H to J , contradicting the minimality of K. Thus, every homomorphism
from K to itself is injective and hence an isomorphism. Similarly, we can show that the core is unique
up to isomorphism: If K1,K2 are both cores of H, then there are homomorphisms φ1 : K2 → K1

and φ2 : K1 → K2 (we obtain φi by taking a homomorphism from H to Ki and restricting it to
K3−i). Now, φ1 ◦ φ2 is a homomorphism from K1 to itself and hence an isomorphism, and similarly
for φ2 ◦ φ1. It follows that φ1, φ2 are bijective and hence isomorphisms.

Note that if H is bipartite (and has at least one edge), then the core of H is an edge. On the
other hand, if H is not bipartite then neither is its core. Using cores, we can now prove Theorem
2.2. The idea is to do the construction for the core of H, and then blow it up by a constant factor
to get a construction for H.

Proof of Theorem 2.2. Let K be the core of H. Then K is also not bipartite. Write V (K) =
{1, . . . , k}, where (1, . . . , ℓ, 1) is an odd cycle. Take S ⊆ [n] from Theorem 2.3 (with parameter ℓ),
and define a graph G with sides V1, . . . , Vk by doing the following: For each y ∈ [n] and x ∈ S, put
a copy Kx,y of K on v1, . . . , vk, where vi = y + (i − 1)x ∈ Vi (in this copy, vi plays the role of i).
As in the proof of Theorem 2.4, the copies Kx,y are edge-disjoint, and hence G has εn2 edge-disjoint
copies of K.

On the other hand, since K is a core, every copy of K in G is of the form v1, . . . , vk with vi ∈ Vi
playing the role of i. Hence, for each such copy v1, . . . , vk, the vertices v1, . . . , vℓ makes an odd

7A homomorphism from a graph G to a graph H is a mapping φ : V (G) → V (H) such that φ(x)φ(y) ∈ E(H) for
every xy ∈ E(G).
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cycle. By the same argument as in the proof of Theorem 2.4, each such odd cycle is of the form
(y, y + x, . . . , y + (ℓ − 1)x) for some y ∈ [n], x ∈ S, and hence the number of such odd cycles is at
most n2. Thus, the total number of copies of K in G is at most n2 · nk−ℓ ≤ nk/n ≤ εω(1)nk.

To obtain a construction for H, take the above construction for K and blow it up by a factor of
h := |V (H)|. Then each copy Kx,y of K gives rise to a copy of H (because H is homomorphic to
K, i.e., contained in a blowup of K). Hence, the resulting graph (which has O(n) vertices) has εn2

edge-disjoint copies of H. On the other hand, each copy of H must contain a copy of K (because
K is a subgraph of H). Also, the blown-up graph has O(εω(1)nk) copies of K (the only way to get
copies of K is from blowups of copies of K in G, as K is a core). Thus, the total number of copies
of H is O(εω(1)nk) · nh−k = O(εω(1)nh), as required. ■

2.1 Hypergraphs

The removal lemma (Theorem 1.1) was famously generalized to hypergraphs by Gowers and inde-
pendently Nagle-Rödl-Schacht-Skokan in the early 2000’s. Another proof was given by Tao. The
statement is as follows. For k-graphs G,H, we say that G is ε-far from being H-free if we must
delete at least εnk edges to turn G into an H-free hypergraph, where n = |V (G)|.

Theorem 2.6 (Hypergraph removal lemma). For every k-graph H and ε > 0, there is δ = δH(ε) > 0
such that if G is an n-vertex k-graph which is ε-far from being H-free, then G contains at least δnv(H)

copies of H.

The proof of 2.6 relies on an appropriate generalization of Szemerédi’s regularity lemma to hy-
pergraphs. Regularity for hypergraphs is much more involved than for graphs. We may touch upon
this towards the end of the course.

It is natural to ask for an extension of Theorem 2.2 to k-graphs. Namely, for which k-graphs H
does it hold that δH(ε) = poly(ε)? A k-graphH is k-partite if there is a partition V (H) = U1∪· · ·∪Uk

such that each edge intersects each of the sets Ui. The Kővári-Sós-Turán theorem has an analogue
for hypergraphs; this is a classical theorem proved by Erdős.

Theorem 2.7 (Hypergraph KST, supersaturation form). An n-vertex k-graph with εnk edges con-

tains at least poly(ε)ns1+···+sk copies of K
(k)
s1,...,sk .

Theorem 2.7 implies that if H is k-partite then δH(ε) = poly(ε). Kohayakawa, Nagle and Rödl
suggested that the converse is also true, i.e., that being k-partite is necessary for having a polynomial
removal lemma. After an earlier work by Alon and Shapira, this was proved by the author and
Shapira.

Theorem 2.8 (Gishboliner-Shapira 2025). For a k-graph H, δH(ε) = poly(ε) if and only if H is
k-partite.

The idea for proving Theorem 2.8 is, roughly speaking, to reduce from the hypergraph case to the
graph case. More precisely, we will show that for every non-k-partite H, one can reduce to a graph
cycle or to a complete hypergraph. Both of these cases can be easily handled (cycles are handled
as in the proof of Theorem 2.4). To explain what we mean by a reduction, we need the following
definition. Let H be a k-graph and let F be an r-graph, r ≤ k. We say that F is an induced shadow
subgraph of H if there is a subset X ⊆ V (H), |X| = |V (F )|, such that

1. For every e ∈ E(H), |e ∩X| ≤ r.
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2. The r-graph {e ∩X : e ∈ E(H), |e ∩X| = r} is isomorphic to F .

Very roughly speaking, our approach is to show that if F is an induced shadow subgraph of H,
then hardness for the F -removal lemma implies hardness for the H-removal lemma.8 What are the
base cases of this argument? I.e., what are the hypergraphs to which we reduce all others? In the
following lemma we show that it suffices to take the base cases to be (2-uniform) cycles and complete
hypergraphs.

Lemma 2.9. Let H be a non-k-partite k-graph. Then H has an induced shadow subgraph which is

either a 2-uniform cycle or K
(s)
s+1 for some 2 ≤ s ≤ k.

Proof. Let ∂2H be the 2-shadow of H, i.e., ∂2H is the graph on H where xy is an edge if there
is e ∈ E(H) with x, y ∈ e. If ∂2H has an induced cycle Ck of length at least 4, then this gives
an induced shadow copy of Ck in H.9 Otherwise, ∂2H is chordal. Also, χ(∂2H) ≥ k + 1, because
else H is k-partite. Chordal graphs are perfect, meaning that ω(∂2H) = χ(∂2H) ≥ k + 1. Let Y
be a (k + 1)-clique in ∂2H. Let X ⊆ Y be a minimal subset which is not contained in any edge of
H. This is well defined because Y itself is not contained in any edge of H, as |Y | = k + 1. Also,
|X| ≥ 3 because any subset of Y of size 2 is contained in an edge of H, as Y is a clique in ∂2H. Put

s+ 1 = |X|. Then X forms an induced shadow copy of K
(s)
s+1 in H.10 ■

Let us now sketch the proof of Theorem 2.8. As alluded to above, the proof works by taking a

construction for one of the base cases – i.e., a graph cycle or K
(s)
s+1 – and using it to get a construction

for H. A construction for cycles is given by Theorem 2.4. As explained above, the cycle given by
Lemma 2.9 may be even. A crucial point is that the proof of Theorem 2.4 works also for even cycles,
provided that we are only interested in bounding the number of cycles of the form (v1, . . . , vk, v1)

with vi ∈ Vi. A construction for K
(s)
s+1 (i.e., showing that the K

(s)
s+1-removal lemma is not polynomial)

is similar. For completeness, we give a sketch at the end of this section.

Proof sketch of Theorem 2.8. Let H be a non-k-partite k-graph. We assume that H is a core
(we saw in the proof of Theorem 2.2 how to reduce from a hypergraph to its core via a constant-
size blowup).11 By Lemma 2.9, H has an induced shadow subgraph which is a 2-uniform cycle or

K
(s)
s+1. We will only handle the former case; the latter case is handled similarly. So suppose that

V (H) = {1, . . . , h}, and (1, . . . , ℓ, 1) is an induced shadow copy of Cℓ. Use (the proof of) Theorem 2.4
to obtain a graph G′ with parts V1, . . . , Vℓ having a collection C of εn2 edge-disjoint cycles of the form
(v1, . . . , vℓ) but only ε

ω(1)nℓ cycles of this form in total.12 We now add additional sets Vℓ+1, . . . , Vh
and would like to define k-graph G on the basis of G′. We will extend each ℓ-cycle (v1, . . . , vℓ) ∈ C

8This is not accurate. What we actually need is hardness for an F -partite version of the F -removal lemma. For
example, in some cases we take F to be an even cycle. While the removal lemma for an even cycle Cℓ is polynomial
(by Theorem 2.2), we can in fact construct a graph with parts V1, . . . , Vℓ having εn2 edge-disjoint copies of Cℓ, but
altogether only εω(1)nℓ copies of Cℓ which are of the form v1, . . . , vℓ with vi ∈ Vi (this is just the construction from
the proof of Theorem 2.4). Having few such “canonical” copies suffices for our reduction (even though there are many
more copies of Cℓ of different forms, because the Cℓ-removal lemma is polynomial).

9Indeed, the vertex set of this cycle C intersects each edge of H in at most two vertices, because otherwise V (C)
contains a triangle in ∂2H, in contradiction to C being induced of length at least 4.

10Indeed, by the choice of X, we have that |e ∩X| ≤ s for every e ∈ E(H), and that for every Z ⊆ X of size s there
is e ∈ E(H) with e ∩X = Z.

11Note that, in analogy to the graph case, if H is non-k-partite then so is its core (and if H is k-partite then its core
is an edge).

12As explained before, if ℓ is even then G′ may have (many) other cycles of length ℓ, say between two of the parts.
But this will not matter for our argument.
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to many (roughly nk−2) copies of H in G, such that any two such copies of H either intersect in at
most k − 1 vertices, or they share at most k − 3 vertices in Vℓ+1, . . . , Vh (and hence must share at
least 3 vertices in V1, . . . , Vℓ).

Claim 2.10. There is a collection H ⊆ V1 × · · · × Vh with |H| ≥ Ω(εnk) such that:

1. For every (v1, . . . , vh) ∈ H it holds that (v1, . . . , vℓ) ∈ C.

2. For two H1, H2 ∈ H, if |H1 ∩ H2| ≥ k then H1, H2 have at most k − 3 common vertices in
Vℓ+1, . . . , Vh.

13

Proof. There are several ways of doing this: arithmetically or probabilistically. We use the proba-
bilistic deletion method. For each (v1, . . . , vℓ) ∈ C and (vℓ+1, . . . , vh) ∈ Vℓ+1×· · ·×Vh, add (v1, . . . , vh)
to H independently with probability p = cn(k−2)−(h−ℓ), for a small constant c > 0. Then, for ev-
ery pair H1, H2 violating Item 2, delete one of H1, H2 from H. The expected size of H before the
deletions is E[|H|] = |C|nh−ℓp = cεnk. Now we estimate the expected number of violations to Item
2. Suppose that H1, H2 is such a violation. Let Ci = Hi ∩ (V1 × · · · × Vℓ), so Ci ∈ C. Suppose first
that C1 = C2. To violate Item 2, H1, H2 must share at least k − 2 vertices in Vℓ+1, . . . , Vh. Hence,
the number of choices for H1, H2 is at most O(|C|n2(h−ℓ)−(k−2)). Therefore, the expected number of
such pairs H1, H2 in H is at most O(|C|n2(h−ℓ)−(k−2)p2) = O(c · |C|nh−ℓp) = O(c · E[|H|]). Suppose
now that C1 ̸= C2. Any two distinct cycles in C share at most 1 vertex; this is a stronger property
than being edge-disjoint, and it is guaranteed by the way the collection C is constructed in the proof
of Theorem 2.4. So |C1 ∩ C2| ≤ 1. To violate Item 2, H1, H2 must share at least k − |C1 ∩ C2|
vertices in Vℓ+1, . . . , Vh. Suppose first that |C1 ∩ C2| = 0. Then the number of choices for H1, H2

is at most O(|C|2n2(h−ℓ)−k). Hence, the expected number of such pairs H1, H2 appearing in H is
O(|C|2n2(h−ℓ)−kp2) ≤ O(c · |C|nh−ℓp) = O(c · E[|H|]). Here we used that |C| ≤ n2. Similarly, if
|C1 ∩C2| = 1, then the number of choices for C1, C2 is at most O(|C|n) (because any two cycles in C
share at most one vertex), and so the number of choices for H1, H2 is at most O(|C|n ·n2(h−ℓ)−(k−1)).
Hence, the expected number of such pairs H1, H2 in H is again O(|C|n2(h−ℓ)−kp2) = O(c · E[|H|]).
Choosing c small enough, we see that the expected number of violations is at most 1

2E[|H|], say, so
the deletion method works. ■

Let us now continue the proof of Theorem 2.8. Define a k-graph G by putting a copy of H on each
h-tuple in H. We claim that these copies are edge-disjoint. Indeed, suppose that two such copies
share an edge. Then in particular, they share at least k vertices. By Item 2 of the claim, this means
that they share at most k − 3 vertices in Vℓ+1, . . . , Vh, and hence at least 3 in V1, . . . , Vℓ. But this
means that some edge of H intersects {1, . . . , ℓ} in at least 3 vertices, contradicting the definition of
an induced shadow copy. It follows that the copies in H are indeed edge-disjoint. As |H| ≥ Ω(εnk),
G is Ω(ε)-far from H-free.

Let us now bound the total number of H-copies in G. Since H is a core and G is homomorphic
to H (via the homomorphism Vi 7→ i), every H-copy in G is of the form v1, . . . , vh with vi ∈ Vi.
Consider such a copy. Fix any 1 ≤ i ≤ ℓ and consider the pair vi, vi+1, with indices taken modulo
ℓ. By the definition of an induced shadow copy, the pair {i, i + 1} (with indices taken modulo ℓ)
is contained to some edge of H. Therefore, there is an edge e ∈ E(G) such that vi, vi+1 ∈ e. By
the definition of G, e belongs to some copy H ′ ∈ H, and by Item 1 of Claim 2.10, we have that

13This condition might seem a bit mysterious (although it is exactly what we need). To prove it, we will actually
show that if |H1∩H2| ≥ k then H1, H2 have the same vertices in V1, . . . , Vℓ (i.e., they extend the same (v1, . . . , vℓ) ∈ C),
and that any two different extensions of (v1, . . . , vℓ) ∈ C share at most k − 3 vertices in Vℓ+1, . . . , Vh.
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vivi+1 ∈ E(G′). Thus, for every copy H-copy v1, . . . , vh in G, it holds that (v1, . . . , vℓ) is an ℓ-cycle
in G′. But by the choice of G′, the number of such ℓ-cycles is at most εω(1)nℓ. Hence, the number of
H-copies in G is at most εω(1)nℓ · nh−ℓ = εω(1)nh. ■

To conclude this section, let us sketch the proof of the fact that the K
(s)
s+1-removal lemma is not

polynomial. This fact is needed for the proof of Theorem 2.8.

Theorem 2.11. For every s ≥ 2, there exists an n-vertex s-graph G with εns edge-disjoint copies

of K
(s)
s+1, but only ε

ω(1)ns+1 copies of K
(s)
s+1 in total.

Proof sketch. Take the set S ⊆ [n] from Theorem 2.3, applied with parameter k = 3. As in the
proof of Theorem 2.4, we choose n such that |S| = εn. Take s+ 1 sets V1, . . . , Vs+1 (each identified

with [(s + 1)n]), and for each x ∈ S and y1, . . . , ys−1 ∈ [n], add a copy of K
(s)
s+1 on the vertices

v1, . . . , vs+1, vi ∈ Vi, where vi = yi for 1 ≤ i ≤ s − 1, vs = x +
∑s−1

i=1 yi, vs+1 = 2x +
∑s−1

i=1 yi.

It is easy to check that these copies of K
(s)
s+1 are edge-disjoint, because knowing s of the vertices

v1, . . . , vs+1 allows one to find x, y1, . . . , ys−1. Thus, G has a collection of |S|ns−1 ≥ εns edge-disjoint

copies of K
(s)
s+1. On the other hand, one can show, using that S has no solution to x1 + x2 = 2x3

with distinct x1, x2, x3, that every copy of K
(s)
s+1 in G is one of the original copies we put in. Hence,

the total number of copies is |S|n ≤ ns = ns+1/n ≤ εω(1)ns+1. ■

3 The induced removal lemma

It is natural to consider a variant of the removal lemma for induced subgraphs. In this case, we
allow both adding and removing edges, since adding edges may also be useful in order to make a
graph induced H-free. Thus, an n-vertex graph G is said to be ε-far from induced H-free if one has
to add/delete at least εn2 edges in order to make G induced H-free. The following is the induced
analogue of the removal lemma:

Theorem 3.1 (Induced removal lemma, Alon-Fischer-Krivelevich-Szegedy 2000). Let H be a fixed
graph. For every ε > 0 there is δ = δH(ε) > 0 such that if an n-vertex graph G is ε-far from induced
H-free, then G contains at least δnv(H) induced copies of H.

The proof of Theorem 3.1 is significantly more complicated than that of Theorem 1.1. The natural
approach is to take a regular partition and try to clean it, arguing that if after the cleaning there
still remains an induced copy of H, then before the cleaning there are many such copies. For the
cleaning, it is natural to delete all possible edges between Vi, Vj if d(Vi, Vj) is close to 0, and to add
all possible edges between Vi, Vj if d(Vi, Vj) is close to 1. However, it is not clear how to handle the
non-regular pairs (Vi, Vj) and the edges inside the sets Vi. Whereas in the non-induced case we could
simply delete all such edges and thus make sure that any remaining H-copy uses none of them, it
is not clear how to proceed in the induced case. We will need a more involved “regularity scheme”.
Let us now describe the structure that we need in order to prove Theorem 3.1. We only present the
main ideas and avoid many of the details.

Regularity scheme for induced removal

The proof of Theorem 3.1 proceeds by finding an ε-regular partition V1, . . . , Vt of G, and disjoint
Ui,1, . . . , Ui,h ⊆ Vi, where h = |V (H)| (say), such that the following holds:
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1. All pairs (Ui,k, Uj,ℓ) for (i, k) ̸= (j, ℓ) are ε-regular.

2. For every 1 ≤ i < j ≤ t, all pairs (Ui,k, Uj,ℓ) for k, ℓ ∈ [h] have the same density, up to ε.

3. For every 1 ≤ i ≤ t, either d(Ui,k, Ui,ℓ) ≥ 1
2 for all 1 ≤ k < ℓ ≤ h, or d(Ui,k, Ui,ℓ) ≤ 1

2 for all
1 ≤ k < ℓ ≤ h.

4. For all but εt2 of the pairs 1 ≤ i < j ≤ t, it holds that |d(Vi, Vj) − d(Ui,k, Uj,ℓ)| ≤ ε for all
k, ℓ ∈ [h].

Cleaning the graph consists of the following:

(a) For every 1 ≤ i < j ≤ t, if d(Ui,k, Uj,ℓ) ≥ 1− 2ε for all k, ℓ ∈ [h], then make (Vi, Vj) complete,
and if d(Ui,k, Uj,ℓ) ≤ 2ε for all k, ℓ ∈ [h], then make (Vi, Vj) empty. Else, make no changes.

(b) For every 1 ≤ i ≤ t, if d(Ui,k, Ui,ℓ) ≥ 1
2 for all 1 ≤ k < ℓ ≤ h then make Vi a clique, and if

d(Ui,k, Ui,ℓ) ≤ 1
2 for all 1 ≤ k < ℓ ≤ h then make Vi an independent set.

Note that in Item (a), if we make no changes between (Vi, Vj) then ε ≤ d(Ui,k, Uj,ℓ) ≤ 1 − ε for
all k, ℓ ∈ [h], meaning that we can embed both edges and non-edges in these pairs (Ui,k, Uj,ℓ).

The sets Ui,k are sometimes called representatives for Vi; the changes between Vi and Vj (or
within Vi) are made according to their representatives (Ui,k, Uj,ℓ). Items 2-3 require that these
representatives are consistent. Item 4 is meant to ensure that the number of changes made when
cleaning the graph (in Item (a)) is small. The proof proceeds by showing that if there is a copy of
H in the cleaned graph, say (without loss of generality) between some sets V1, . . . , Vr and using ai
vertices from Vi for each i ∈ [r], then we can find many H-copies in the original graph by taking ai
representative sets Ui,k from Vi for each 1 ≤ i ≤ k.

Very roughly speaking, the structure described in Items 1-4 is found as follows: First, apply the
regularity lemma to find the partition P = {V1, . . . , Vt}. Then apply the regularity lemma again with
a much smaller regularity parameter (which depends on t; much smaller than 1/t in fact) to find a
partition Q refining P, and sample a set Ui ⊆ Vi randomly. With high probability, all pairs (Ui, Uj)
are highly regular. Now apply the regularity lemma on G[Ui] (this time with parameter ε again) to
partition Ui into sets Ui,k, and apply Ramsey’s theorem (preceded by Turán’s theorem) on these sets
to find Ui,1, . . . , Ui,h satisfying Item 3. Items 1-2 hold because all pairs (Ui, Uj) are highly regular.

To satisfy Item 4, more is required, and in fact the above presentation is somewhat misleading:
One applies the regularity lemma not just twice but repeatedly, obtaining a sequence of partitions Pi

such that Pi+1 refines Pi and is regular with a parameter appropriately defined in terms of |Pi|. One
stops when q(Pi+1) ≤ q(Pi) + ε, where q(·) is the mean square density. It is then possible to show
that Item 4 holds. This argument proves the so-called strong regularity lemma, which we shall not
go into. In the following section, we will see in more detail a variant of the above regularity scheme.

The infinite removal lemma

It is natural to ask for an analogue of the removal lemma for families of forbidden (induced) subgraphs.
The more general result of this type was obtained by Alon and Shapira, and applies to any (possibly
infinite) graph family.

Theorem 3.2 (Infinite removal lemma, Alon-Shapira 2005). Let H be a (possibly infinite) family of
graphs. For every ε > 0 there exist δ = δH(ε) > 0 and m = mH(ε) ≥ 1 such that if an n-vertex graph
G is ε-far from induced H-freeness, then there is H ∈ H with |V (H)| ≤ m, such that G contains at
least δnv(H) copies of H.
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Polynomial removal lemmas

A key question is to characterize the graph-families H for which δH(ε) and mH(ε) in Theorem 3.2
depend polynomially on ε (more precisely, on ε and 1/ε, respectively).

Problem 3.3. For which graph-families H is the induced H-free removal lemma polynomial?

A special case of this problem (for the property of not-necessarily-inducedH-freeness) was handled
in Section 2. Returning to the induced H-removal lemma for a single graph H, works of Alon-Shapira
and Alon-Fox give the following almost complete characterization. We use Pk (resp. Ck) to denote
the path (resp. cycle) with k vertices.

Theorem 3.4 (Alon-Shapira 2006, Alon-Fox 2015). text

1. If H ∈ {P2, P2, P3, P3, P4} then the induced H-removal lemma is polynomial.

2. If H /∈ {P2, P2, P3, P3, P4, C4, C4} then the induced-H removal lemma is not polynomial.

The only remaining case is H = C4.
14 This case remains open, but an exponential bound is known:

Theorem 3.5 (Gishboliner-Shapira 2019). For the induced-C4 removal lemma, we have

δC4(ε) ≥ 2−poly(1/ε).

Conjecture 3.6. The induced-C4 removal lemma is polynomial.

4 VC-dimension and ultra-strong regularity

We begin by recalling the definition of VC-dimension, and then discuss its connection to graphs and
regularity.

Definition 4.1 (Shattered set, VC-dimension). Let F be a family of subsets of a set V . A set S ⊆ V
is shattered by F if for every T ⊆ S, there exists F ∈ F with S ∩ F = T . The VC-dimension of F
is the maximum size of a shattered set.

VC-dimension is a fundamental measure of complexity used in combinatorics and computer sci-
ence. One of the basic facts about VC-dimension is the so-called Sauer-Shelah lemma, stating the
following:

Theorem 4.2 (Sauer-Shelah lemma). Let F ⊆ 2[n] be a family of subsets of [n] with VC-dimension
d. Then |F| ≤

∑d
i=0

(
n
i

)
.

Note that the bound in Theorem 4.2 is tight, because the set family consisting of all sets of size at
most d has VC dimension d.

Proof of Theorem 4.2. We prove by induction on n that the number of sets shattered by F is at
least |F|. This suffices, because if |F| >

∑d
i=0

(
n
i

)
then there must exist a shattered set of size larger

than d+ 1, and hence the VC-dimension is larger than d+ 1.

Write F0 = {F ∈ F : n /∈ F} and F1 = {F \ {n} : F ∈ F , n ∈ F}. Then F0,F1 ⊆ 2[n−1], and
F = F0 ∪ F1. By induction, Fi shatters at least |Fi| sets for i = 0, 1. Every set shattered by F0 or

14The case H and H are equivalent.
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F1 is (trivially) shattered by F . Also, it is easy to see that if S is shattered by both F0,F1, then
S ∪ {n} is shattered by F . This allows us to conclude that

#{sets shattered by F} ≥ #{sets shattered by F0}+#{sets shattered by F1} ≥ |F0|+ |F1| = |F|.

■

In applications, the exact bound
∑d

i=0

(
n
i

)
from Theorem 4.2 is often not important; the crucial

fact is that |F| is polynomial in n.

To use VC-dimension in the context of graphs, we consider the following set-family: Let G be a
graph, and let F = {N(v) : v ∈ V (G)}. The VC-dimension of G is defined as the VC-dimension of
the set-family F . What does it mean for a graph to have unbounded VC-dimension? It means that
for every fixed d ≥ 1, there is a set S = {x1, . . . , xd} shattered by F . This in turn means that there
are vertices (yI : I ⊆ [d]), such that yI is adjacent to xi if and only if i ∈ I. In what follows, we
will want to assume that yI /∈ {x1, . . . , xd} for every I. This can be achieved by taking a slightly
larger shattered set S = {x1, . . . , xd, xd+1, . . . , xd+k}, where we think of xd+1, . . . , xd+k as “dummy
vertices”. Doing this supplies us with 2k different vertices to play the role of yI for each I ⊆ [d], so
if 2k > d then we can choose such a yI which is outside {x1, . . . , xd}.

We now see that if G has unbounded VC-dimension, then it has a bi-induced copy of every fixed-
size bipartite graph H = (A,B) (recall Definition 1.6). Indeed, we can construct such a copy by
first choosing a shattered set S = {x1, . . . , xd} to play the role of A, and then, for each b ∈ B,
choosing yI for I which corresponds to the neighborhood of b in A (namely, if A = {a1, . . . , ad},
then I is the set of all i ∈ [d] such that aib ∈ E(H)). By taking a slightly larger set S (of size
d+ k for 2k ≥ |B|, as above), we can make sure that we have enough vertices yI with neighborhood
{xi : i ∈ I} in {x1, . . . , xd}, in case several vertices in B have the same neighborhood in H. We thus
conclude the following:

Fact 4.3. G has unbounded VC-dimension if and only if G contains a bi-induced copies of all fixed-
size bipartite graphs.15

The above is of course not a rigorous statement (because of the term “unbounded”), but it should
be clear what it means. A rigorous statement would be that if G has VC-dimension at least d1,
then it contains bi-induced copies of all bipartite graphs of size d2 (for some d2 growing with d1),
and vice versa.

What can we say about a graph G which avoids bi-induced copies of some fixed bipartite H? Let
us apply the regularity lemma to obtain an ε-regular equipartition V1, . . . , Vt. By Lemma 1.7, all
regular pairs (Vi, Vj) have density at most γ or at least 1 − γ, provided that ε ≪ γ. Thus, there
is an equipartition of V (G) where all but γt2 of the pairs (Vi, Vj) have density at most γ or at
least 1 − γ.16 Such a partition is called γ-homogeneous. Thus, bounded VC-dimension implies the
existence of γ-homogeneous partitions. However, the partition obtain in this way is very large, of
tower-type size in 1/γ. Can we do better? As we will now show, using the Sauer-Shelah lemma we
can find a partition of size only polynomial in 1/γ. The key fact we will need is as follows:

Lemma 4.4. If G has VC-dimension d, then for every ε > 0, there are vertices x1, . . . , xt, t ≤
(1/ε)O(d), such that for every x ∈ V (G) there is i ∈ [t] with |N(x)△N(xi)| ≤ εn.

15We only proved one direction, but the other direction is also easy: Take the d× 2d incidence bipartite graph of [d]
versus subsets of [d]. If G contains a bi-induced copy of this bipartite graph, then its VC-dimension is at least d.

16Such a pair is called γ-homogeneous. Note that a being homogeneous is a stronger property than being regular: a
γ-homogeneous pair is necessarily γ1/3-regular. This is left as an exercise for the reader.
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Proof. Let x1, . . . , xt be a maximum collection of elements such that |N(xi)△N(xj)| > εn for every
1 ≤ i < j ≤ t. It suffices to show that t < t0 := (1/ε)d+1.17 Suppose not, and suppose that t = t0
(by disposing of the other xi’s). Sample a subset U ⊆ V (G) of size |U | = m := 2 log(t)

ε = Õ(1ε ). For
1 ≤ i < j ≤ t, the probability that N(xi) ∩ U = N(xj) ∩ U is at most(

(1−ε)n
m

)(
n
m

) ≤ (1− ε)m ≤ e−εm = t−2.

By the union bound, there is an outcome for U such that N(xi) ∩ U ̸= N(xj) ∩ U for every 1 ≤ i <

j ≤ t. But now (N(xi) ∩ U : 1 ≤ i ≤ t) is a set system on U of size t = (1/ε)d+1 >
∑d

i=0

(|U |
i

)
, so by

the Sauer-Shelah lemma (Theorem 4.2), it has VC-dimension larger than d, in contradiction to the
assumption that G has VC-dimension d. ■

We will now use Lemma 4.4 to find a small ε-homogeneous equipartition of a graph G with
bounded VC-dimension. As far as we know, this result is originally due to Lovász-Szegedy and
Alon-Fischer-Newman.

Theorem 4.5 (Lovász-Szegedy 2010, Alon-Fischer-Newman 2007). If G has VC-dimension d, then
it has an ε-homogeneous equipartition of size (1/ε)O(d).

Proof. Let x1, . . . , xt ∈ V (G), t ≤ (1/γ)O(d), be the vertices given by Lemma 4.4, applied with
parameter γ = poly(ε) ≪ ε to be chosen (implicitly) later. For each i ∈ [t], let Xi be the set of all
x ∈ V (G) such that |N(x)△N(xi)| ≤ γn. So X1 ∪ · · · ∪ Xt = V (G) by the guarantees of Lemma
4.4. The idea is to claim that X1, . . . , Xt is an ε-homogeneous partition. The partition X1, . . . , Xt

is not an equipartition, so we need to adapt the definition of an ε-homogeneous partition to allow
parts of different sizes: A partition X1, . . . , Xt is ε-homogeneous if the sum of |Xi||Xj | over all pairs
1 ≤ i, j ≤ t with ε < d(Xi, Xj) < 1− ε is at most εn2. This sum includes terms i = j.

Let us now show that {X1, . . . , Xt} is ε-homogeneous. Sample vertices x, y ∈ V (G) uniformly at
random and then a vertex x′ belonging to the same part Xi as x. Let A be the event that xy ∈ E(G)
but x′y /∈ E(G), or vice versa. In other words, this is the event that y ∈ N(x)△N(x′). We will
show that due to the choice of X1, . . . , Xt, P[A] ≤ 2γ, and that this implies that {X1, . . . , Xt}
is ε-homogeneous. First, condition on the choice of x, x′. Since x, x′ are in the same part Xi,
we have |N(x)△N(x′)| ≤ |N(x)△N(xi)| + |N(x′)△N(xi)| ≤ 2γn (by the triangle inequality), so
P[y ∈ N(x)△N(x′)] ≤ 2γ. It follows that P[A] ≤ 2γ.

Now suppose by contradiction that {X1, . . . , Xt} is not ε-homogeneous. Fix a pair Xi, Xj with
ε < d(Xi, Xj) < 1− ε. We need the following claim:

Claim 4.6. For disjoint vertex-sets U, V , if ε < d(U, V ) < 1− ε, then there are Ω(ε)|U |2|V | triples
x, x′ ∈ U, y ∈ V or Ω(ε)|V |2|U | triples x, x′ ∈ V, y ∈ U satisfying y ∈ N(x)△N(x′).

The claim is left as an exercise for the reader.

By the claim, without loss of generality there are Ω(ε)|Xi|2|Xj | triples x, x′ ∈ Xi, y ∈ Xj with
y ∈ N(x)△N(x′). The probability that the random vertices x, x′, y form such a triple is

Ω(ε)|Xi|2|Xj |
n2|Xi|

=
Ω(ε)|Xi||Xj |

n2
.

17As one can see from the proof, (1/ε)d+1 can be replaced with Õ(1/εd).
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Summing over all non-ε-homogeneous pairs (Xi, Xj) and using the assumption that {X1, . . . , Xt}
is not ε-homogeneous, we get P[A] ≥ Ω(ε2) > 2γ, provided that γ is small enough. This is a
contradiction.

A last step, in order to obtain an equipartition, is to chop up each part Xi into equal-sized parts
plus maybe one leftover part, then collect the leftover parts and partition them again into equal-sized
parts. One can show that (if the part size is small enough) then the resulting partition is still β-
homogeneous for β which depends polynomially on ε. (A refinement of an ε-homogeneous partition
is O(

√
ε)-homogeneous, which follows from Markov’s inequality). ■

Alon, Fischer and Newman in fact proved a stronger statement: They show that it suffices to
assume that G has few bi-induced copies of some fixed bipartite graph H (instead of assuming that
G has no such copies at all). This result, as well as Theorem 4.5, are sometimes called an ultra-strong
regularity lemma.

Theorem 4.7 (Alon-Fischer-Newman 2007). For every bipartite graph H and ε > 0, there is δ =
poly(ε) > 0, such that the following holds. If an n-vertex graph G has at most δnv(H) bi-induced
copies of H, then G has an ε-homogeneous equipartition into at most 1

δ parts.

Let us now translate the condition of avoiding bi-induced copies of a bipartite graph to the
condition of avoiding induced subgraphs of certain types. A co-bipartite graph is the complement of
a bipartite graph. A split graph is a graph whose vertex-set can be partitioned into a clique and an
independent set.

Lemma 4.8. Let F1 be a bipartite graph, F2 be a co-bipartite graph, F3 be a split graph. There
is a bipartite graph H = (A,B) such that if G has no induced copies of F1, F2, F3, then it has no
bi-induced copies of H.

Note that the three graph types (bipartite, co-bipartite, split) capture all possibilities of parti-
tioning the vertex-set into two homogeneous sets (cliques or independent sets).

Proof sketch of Lemma 4.8. We need to show that there is a bipartite H = (A,B) such that no
matter how we place edges inside A and inside B, we get a graph which contains an induced copy of
F1, F2 or F3. We show that a large enough random graph H satisfies this. Let the edges inside A and
B be given. We can use Ramsey’s theorem to partition almost all of A and of B into homogeneous
sets of size k, where k ≥ |V (Fi)| for i = 1, 2, 3. Now, for such a partition, the probability that there
is no induced copy of F1, F2, F3 is at most 1−2−k2 . Thus, if |A| = |B| = m, the probability of failure
is at most (1− 2−k2)m

2/k2 ≤ e−Ωk(m
2). On the other hand, the number of partitions is at most m2m,

so we can take a union bound. ■

By combining Theorem 4.7 and Lemma 4.8, one can prove the following:

Theorem 4.9 (Gishboliner-Shapira 2017). If H is a finite graph-family containing a bipartite graph,
a co-bipartite graph and a split graph, then the induced-H removal lemma has polynomial bounds.

Proof sketch. The proof follows the scheme described in Section 3. Let F1, F2, F3 ∈ H such that
F1 is bipartite, F2 is co-bipartite and F3 is split. Let H be the bipartite graph given by Lemma
4.8. Let G be an n-vertex graph which is ε-far from being induced-H-free. Suppose first that G
contains at least δnv(H) bi-induced copies of H.18 Then by Lemma 4.8, there is i = 1, 2, 3 such that

18For the sake of keeping the presentation simple, we will not choose δ explicitly. Rather, δ is the number given
by Theorem 4.7; we will apply this theorem several times with different parameters, and δ is the minimum of the
resulting numbers.
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G contains at least δ
3n

v(H) vertex-sets of size v(H) which contain an induced copy of Fi. On the

other hand, each induced copy of Fi is in at most nv(H)−v(Fi) such vertex sets, so there are at least
δ
3n

v(Fi) induced copies of Fi, as required.

From now on, suppose that G has less than δnv(H) bi-induced copies of H. We apply Theorem 4.7
to get an ε-homogeneous equipartition P = {V1, . . . , Vt}, and then apply Theorem 4.7 again to find
an ε′-homogeneous equipartition Q which refines19 P, where ε′ is small enough (but still polynomial)
in terms of ε and t; i.e., ε′ = (ε/t)C for a large constant C (depending on H). Then, for each
1 ≤ i ≤ t, sample Ui ∈ Q uniformly at random among all parts of Q which are contained in Vi. One
can show that due to the choice of ε′, the following holds with positive probability:

(i) For every 1 ≤ i < j ≤ t, (Ui, Uj) is ε
′-homogeneous; i.e., d(Ui, Uj) ≤ ε′ or d(Ui, Uj) ≥ 1− ε′.

(ii) For all but
√
εt2 of the pairs 1 ≤ i < j ≤ t, it holds that |d(Ui, Uj)− d(Vi, Vj)| ≤ 10

√
ε.

The next step is as follows: For each i ∈ [t], apply Theorem 4.7 to G[Ui] to get an ε-homogeneous
equipartition Ri of Ui. Recall that this means that all but ε|Ri|2 of the pairs of parts in Ri are
ε-homogeneous (have density at most ε or at least 1 − ε). Apply Turán’s theorem to pass to R′

i ⊆
Ri of size roughly |R′

i| ≈ 1
ε such that any two parts in R′

i are ε-homogeneous, and then apply
Ramsey’s theorem to find R′′

i = {Ui,1, . . . , Ui,h} ⊆ R′
i such that either d(Ui,k, Ui,ℓ) ≤ ε for all

1 ≤ k < ℓ ≤ h or d(Ui,k, Ui,ℓ) ≥ 1 − ε for all 1 ≤ k < ℓ ≤ h.20 Another important point is that
since (Ui, Uj) is ε

′-homogeneous and ε′ is very small (but still polynomial) compared to ε, we have
|d(Ui,k, Uj,ℓ)− d(Ui, Uj)| ≤ ε for all 1 ≤ i < j ≤ t and k, ℓ ∈ [h].

We now achieved the setting described by Items 1-4 in Section 3. Now clean the graph as described
in that section. One then shows that if the cleaned graph has an induced copy of some F ∈ H, then
the original graph has many (i.e., δnv(F )) such induced copies. ■

Gishboliner and Shapira also proved that if a finiteH contains no bipartite graph or no co-bipartite
graph, then the induced-H removal lemma is not polynomial (this proof uses similar constructions
to those used in Section 2). The following remains open:

Problem 4.10. Characterize the finite graph-families H for which the induced-H removal lemma is
polynomial.

This is of course a special case of Problem 3.3. The first open case is again H = {C4}. Note that
C4 is both bipartite and co-bipartite, but not split, so the aforementioned results of Gishboliner and
Shapira do not apply.

5 Property testing

Let us consider the following equivalent form of Theorem 3.2:

Theorem 5.1 (Infinite removal lemma, sampling formulation). Let H be a family of graphs. For
every ε > 0 there is an integer q = qH(ε) such that if G is ε-far from induced H-free, then with
probability at least 0.99, a sample of q vertices from G is not induced H-free.

19While this is not part of the statement of Theorem 4.7, the theorem can be reproved to allow for a partition P as
part of the input, such that the outputted equipartition refines P.

20Here h can be chosen as h = maxF∈F v(F ).
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To see that the above follows from Theorem 3.2, note that a sample of m = mH(ε) vertices
contains an induced copy of H ∈ H with probability at least δ = δH(ε), so a sample of q = Cm/δ
contains such a copy with probability tending to 1 as C tends to infinity. The reverse direction is
also true, i.e., that Theorem 5.1 implies Theorem 3.2 (this is left as an exercise for the reader), and
q depends polynomially on m, 1/δ.

Theorem 5.1 leads to the notion of property testing. A property tester for a graph property P is a
randomized algorithm that distinguishes between graphs which satisfy P and graphs that are ε-far
from P, with success probability at least 0.99 (say) in both cases. Namely, if an input G satisfies P
then the algorithm must accept G with probability at least 0.99, and if G is ε-far from P then the
algorithm must reject P with probability at least 0.99.21 The algorithm works by sampling vertices
and making edge queries, i.e., asking if a pair of vertices u, v forms an edge. We require that the
sample complexity of the algorithm, i.e., the number of vertices it samples, depends only on ε and
not on the size of the input graph G.

Property testing originated in the 1990s, and has since been thoroughly studied. The model we
discuss here is called the dense graph model. There are also other models of property testing, e.g.,
for constant-degree graphs.

If P is hereditary, i.e., closed under the removal of vertices22, then then there is a very simple tester
for P: Simply sample q vertices of the input graph G, and accept if and only if the subgraph induced
by the sample satisfies P. As the property is hereditary, if G satisfies P then the tester accepts with
probability 1.23 The fact that this algorithm is correct is simply the statement of Theorem 5.1.

One of the early and highly influential works on property testing is a paper of Goldreich, Gold-
wasser and Ron, where several natural graph properties were shown to be testable with polynomial
sample complexity. Two key examples are k-colorability and having an independent set of size at
least ρn (for a fixed ρ ∈ [0, 1]). Note that the latter is not a hereditary property. To illustrate some
of the ideas in this work, let us show that bipartiteness is testable with sample complexity poly(1/ε).

Theorem 5.2 (Goldreich-Goldwasser-Ron 1998). If G is ε-far from being bipartite then a sample of
q = Õ(1/ε2) vertices of G induces a non-bipartite graph with probability at least 0.9.

Proof. First, by deleting at most ε
2n

2 edges, we may pass to a (spanning) subgraph of G where every
vertex has degree 0 or at least ε

2n. Indeed, as long as there is a vertex v with degree at least 1 but
less than ε

2n, delete all edges touching v. Note that the remaining graph (after the edge deletions) is
ε
2 -far from bipartiteness (because G is ε-far from bipartiteness). Let U be the set of vertices which
are not isolated.

The key idea is to sample in two stages. First, sample vertices x1, . . . , xs, s = 2
ε log(

100
ε ). For a

vertex u ∈ U , the probability that u has no neighbors in X = {x1, . . . , xs} is at most(
1− ε

2

)s
≤ e−εs/2 ≤ ε

100
.

Let U ′ be the set of u ∈ U which have a neighbor in X. By the above and Markov’s inequality, with
probability at least 0.95 we have |U ′| ≥ |U | − ε

5n. Make the vertices in U \U ′ isolated by deleting at
most additional ε

5n
2 edges.

21In the intermediate range – i.e. that G doesn’t satisfy P but is ε-close to it – there is no requirement on the
algorithm.

22Note that a graph property is hereditary if and only if it is defined in terms of a (possibly infinite) family of
forbidden induced subgraphs.

23Accepting inputs satisfying P with probability 1 is known as having one-sided error.
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If G[X] is not bipartite then we are already done. Otherwise, fix any bipartition (A1, A2) of G[X].
For i = 1, 2, let Ui be the set of all vertices u ∈ U ′ which have a neighbor in Ai (if u has a neighbor
in both A1, A2 then place u in one of the sets U1, U2 arbitrarily). Then U ′ = U1 ∪ U2. Also, every
vertex of G which is not currently isolated belongs to U1 ∪U2. As the remaining graph is ε

4 -far from
bipartiteness, there are at least ε

4n
2 edges which are inside U1 or inside U2. Now sample additional

vertices Y = {y1, . . . , yt}, t = 100s
ε = Õ(1/ε2). Note that if we sample any of the edges inside U1

or U2, then the bipartition (A1, A2) of G[X] cannot be extended to a bipartition of G[X ∪ Y ]. The
probability that we sample no such edge is at most(

1− ε

4

)t/2
≤ e−εt/8 < 0.05 · 2−s.

By taking a union bound over all at most 2s bipartitions (A1, A2) of G[X], we see that the probability
that G[X ∪ Y ] is bipartite is at most 0.1, as required. ■

We note that the bound on q in Theorem 5.2 has been improved to Õ(1/ε), which is optimal up
to the logarithmic terms. Also, such a bound has been proved for much more general testing tasks,
such as testing hypergraph k-colorability and (more generally) testing satisfiability.

We now move on to testing for independent sets; more precisely, for the property of containing
an independent set of size at least ρn. As mentioned above, this property was shown to be testable
already by Goldreich, Goldwasser and Ron. However, very recently, a new proof was discovered
by Blais and Seth, which uses the container method and supplies optimal bounds on the sample
complexity of such a tester. Here we present a version of their argument with somewhat weaker
bounds, for the sake of simplicity.

Theorem 5.3 (Blais-Seth 2023). Let G be an n-vertex graph which is ε-far from containing an
independent set of size at least ρn. Then with probability at least 0.9, a sample X = {x1, . . . , xq} of
q = Õ(1/ε3) vertices from G satisfies that α(G[X]) ≤ (ρ− ε

4)q.

Proof. The assumption on G implies that every vertex-set U ⊆ V (G) of size at least ρn contains
at least εn2 edges. But in fact we can get a bit more: every vertex set U of size at least (ρ − ε

2)n
contains at least ε

2n
2 edges. Indeed, otherwise, add arbitrary ε

2n vertices to U , delete all (at most
ε
2n

2 edges) touching these vertices, and delete all edges inside U . This gives an independent set of
size at least ρn, in contradiction to our assumption.

The key part of the argument is the following claim, which uses the container algorithm:

Claim 5.4. Set t := 1
ε . For every independent set I ⊆ V (G) with |I| > t, there are sets F = F (I) ⊆ I

and C = C(I) ⊆ V (G) such that I ⊆ F ∪ C, |F | ≤ t and |C| ≤ (ρ − ε
2)n. Furthermore, C depends

only on F (and not on I). More precisely, if F = F (I), then C(I) = C(F ).24

Proof. The container algorithm is as follows: Initialize F0 = ∅ and C0 = V (G). For i ≥ 0, if
|Ci| ≤ (ρ− ε

2)n or Ci ∩ I = ∅, then stop and output F := Fi, C := Ci. Otherwise proceed as follows:

1. Order the elements of Ci as v1, . . . , vm, such that for every 1 ≤ j ≤ m, vj has maximum degree
in G[{vj , . . . , vm}].25

2. Let 1 ≤ j ≤ m be minimal with vj ∈ I.

24The set F is usually called the fingerprint of I, and the set C is called the container corresponding to F .
25If two vertices have the same degree, then ties are broken according to a pre-fixed ordering on V (G).
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3. Move vj to F , and delete from Ci the vertices v1, . . . , vj and all neighbors of vj in {vj+1, . . . , vm}.
Namely, set

Fi+1 = Fi ∪ {vj}

Ci+1 = Ci \ {vk : k ≤ j or vjvk ∈ E}.

It is easy to see that Fi ⊆ I and I ⊆ Fi ∪ Ci throughout the process, and the upper bound |C| ≤
(ρ− ε

2)n is guaranteed by the process. The fact that C depends only on F is a standard fact about
the container algorithm, and is left for the reader. It now suffices to show that the process stops in at
most t steps, as this would guarantee the upper bound on F . Suppose otherwise. Consider any step i
in the process except the last. Since the process did not stop at step i+1, we have |Ci+1| ≥ (ρ− ε

2)n.
Considering the ordering v1, . . . , vm at step i (see Item 1 above), we have Ci+1 ⊆ {vj+1, . . . , vm},
so in particular, the set U := {vj , . . . , vm} has size at least (ρ − ε

2)n. As explained above, this
means that U contains at least ε

2n
2 edges. As vj is chosen as a vertex of maximum degree in G[U ],

we have dU (vj) ≥ εn. Hence, at least εn vertices are removed from Ci at this step. As this is
true for every step except the last, and we assumed that the process lasts at least t steps, we get
|Ct−1| ≤ n− (t− 1) · εn < (ρ− ε

2)n, a contradiction to the assumption that the process did not stop
before step t. ■

Let us now prove Theorem 5.3. Sample vertices X = {x1, . . . , xq} uniformly at random and
independently.26 We need to upper-bound the probability that G[X] contains an independent set
of size at least (ρ − ε

4)q. Fix any such set I, and let F = F (I) and C = C(F ) be given by
Claim 5.4. If I ⊆ X, then F ⊆ X and X contains at least |I| − |F | vertices of C. Note that
|I| − |F | ≥ (ρ − ε

4)q − 1
ε ≥ (ρ − ε

3)q (provided that ε is small enough). Thus, we see that if
α(G[X]) ≥ (ρ − ε

4)q, then there is a set F ⊆ X = {x1, . . . , xq} such that |X ∩ C(F )| ≥ (ρ − ε
3)q.

We union bound over the choice of indices in [q] which play the role of F , and then condition on
the outcome of these indices (i.e., we condition on F ). The number of choices for the index set is(
q
≤t

)
≤ eO( 1

ε
log q). Having conditioned on F and setting C = C(F ), the random variable |X ∩ C| is

distributed as Bin(q, |C|/n), and so has expectation at most (ρ− ε
2)q. By Hoeffding’s inequality, the

probability that |X ∩ C| ≥ (ρ− ε
3)q is at most e−Ω(qε2). Combining the above, we see that

P
[
α(G[X]) ≥

(
ρ− ε

4

)
q
]
≤ eO( 1

ε
log q) · e−Ω(qε2),

which is less than 0.1 if q = C
ε3

log 1
ε for a large enough constant C. ■

Using Theorem 5.3, we can now obtain a tester for large independent sets.

Theorem 5.5 (Golreich-Goldwasser-Ron 1998, Blais-Seth 2023 (optimal bound)). The property of
containing an independent set of size at least ρn is testable with sample complexity poly(1/ε).

Proof. The algorithm samples vertices X = {x1, . . . , xq}, where q = Õ(1/ε3) is given by Theorem
5.3, and accepts if and only if α(G[X]) > (ρ− ε

4)q. If G has an independent set I of size at least ρn,
then one can show using Hoeffding’s inequality that |X ∩ I| > (ρ− ε

4)q with probability at least 0.9.
And if G is ε-far from containing an independent set of size at least ρn, then α(G[X]) ≤ (ρ − ε

4)q
with probability at least 0.9 by Theorem 5.3. ■

26Here we sample with repetition for the sake of simplicity. Alternatively, one can sample a subset X ⊆ V (G) of size
q uniformly at random and use concentration inequalities for the hypergeometric distribution.
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6 The induced-C4 removal lemma

In this section we give a sketch of the proof of Theorem 3.5, which gives an exponential bound for
the induced-C4 removal lemma. One of the key facts about induced-C4-free graphs that we use is
the following:

Theorem 6.1 (Gyárfás-Hubenko-Solymosi 2002). If an n-vertex induced-C4-free graph has at least

βn2 edges, then it has a clique of size at least α2

8 n.

Proof. The graph G has average degree at least 2βn, so it has a subgraph with minimum degree at
least βn. With a slight abuse of notation, suppose that δ(G) ≥ βn. The key property we will use is
the following: if u, v ∈ V (G) are non-adjacent, then N(u) ∩N(v) is a clique, as otherwise G has an
induced C4. We consider two cases based on the independence number of G.

Case 1: α(G) ≥ 2
β . Fix an independent set I = {v1, . . . , vt} of size t = 2

β . By inclusion-exclusion,
we have

n ≥ |
⋃
i∈[t]

N(vi)| ≥
t∑

i=1

|N(vi)| −
∑

1≤i<j≤t

|N(vi) ∩N(vj)| ≥ t · βn− t2ω(G).

Rearranging this gives

ω(G) ≥ βn− n/t

t
=
β2

4
n,

as required.

Case 2: α(G) ≤ 2
β . Let I = {v1, . . . , vt} be a maximum independent set in G. By the maximality

of I, every vertex in V (G)\I has a neighbor in I. For i ∈ [t], let N∗(vi) be the set of all u ∈ V (G)\I
which is adjacent to vi but not to any other vertex in I. Then N∗(vi) is also a clique, because if
u,w ∈ N∗(vi) are not adjacent then (I \{vi})∪{u,w} is an independent set larger than I. Moreover,

V (G) \ I =
(⋃t

i=1N
∗(vi)

)
∪
(⋃

1≤i<j≤tN(vi) ∩N(vj)
)
. Since each of the t+

(
t
2

)
=

(
t+1
2

)
sets in the

union on the RHS is a clique, we get that

ω(G) ≥ n− |I|(
t+1
2

) ≥ n

2t2
≥ β2

8
n.

■

When proving an induced removal lemma for C4, we cannot assume that the graph is induced-
C4-free, but only that it has few induced copies of C4. Hence, we need an approximate version of
Theorem 6.1. We can prove such a theorem by combining Theorem 6.1 with the fact that the property
of having a clique of size at least ρn is testable. In Section 5 we proved this for independent sets in
place of cliques, but the statement for cliques follows by taking complements. More precisely, we will
apply Theorem 5.3 to the complement of G. The density of a vertex set X is d(X) := e(X)/

(|X|
2

)
.

Lemma 6.2. For every β, δ > 0 there is η = poly(βδ) > 0 such that the following holds. If an n-
vertex graph G has at least 2βn2 edges and less than ηn4 induced copies of C4, then there is U ⊆ V (G)

with |U | ≥ β2

8 n and d(U) ≥ 1− δ.
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Proof sketch. Put ρ := β2

8 and ε = ρδ2

3 . Note that if G is ε-close to having a clique of size at

least ρn, then there is a set U ⊆ V (G) with |U | ≥ ρn and e(U) ≥
(|U |

2

)
− εn2 ≥ (1 − δ)

(|U |
2

)
,

so we are done. So suppose (for the sake of contradiction) that G is ε-far from having a clique
of size at least ρn. Then by Theorem 5.3 (applied to the complement of G), with probability
at least 0.9, a sample X = {x1, . . . , xq} of q = poly(1/ε) = poly( 1

βδ ) vertices of G satisfies that

ω(G[X]) < ρq = β2

8 q. Also, one can show, using Chebyshev’s inequality, that with probability at

least 0.9, e(G[X])
q2

≥ (1−ε) e(G)
n2 ≥ β. Hence, with probability at least 0.8, we have both e(G[X]) ≥ βq2

and ω(G[X]) < β2

8 q. By (the contrapositive of) Theorem 6.1, this means that G[X] contains an
induced C4.

Now, let M denote the number of induced-C4-copies in G. The probability that X = {x1, . . . , xq}
is at least 0.8 (by the above) and at most M · q4 · 1

n4 . Hence, M ≥ 0.8n4

q4
.27 So taking η := 0.8

q4
, we

get a contradiction to the assumption of the lemma. ■

Given Lemma 6.2, our strategy to prove Theorem 3.5 is as follows. Given a graph with few induced
copies of C4, apply Lemma 6.2 repeatedly to find sets U1, . . . , Uk with d(Ui) ≥ 1 − δ. By Lemma
6.2, we can continue the process as long as the remaining graph G−

⋃k
i=1 Ui has at least 2βn

2 edges.
Thus, we obtain a decomposition of V (G) into “almost cliques” and one “almost independent set”.
We will also need information about the bipartite graph between two almost-cliques.28

What can we say about the bipartite graph between two cliques X,Y in an induced-C4-free graph?
The bipartite graph (X,Y ) has no induced matching of size 2, because such a matching corresponds
to an induced C4 in G; namely, there are no x, x′ ∈ X, y, y′ ∈ Y such that y ∈ NY (x) \ NY (x

′)
and y′ ∈ NY (x

′) \ NY (x). In other words, for every x, x′ ∈ X, we have NY (x) ⊆ NY (x
′) or

NY (x
′) ⊆ NY (x). This means that there is an ordering x1, . . . , xm of the vertices in X such that

NY (x1) ⊆ NY (x2) ⊆ · · · ⊆ NY (xm). Let us call such a bipartite graph a generalized half-graph.

As a next step, we need an approximate version of the above structural characterization of a
bipartite graph with no bi-induced copies of M2, the induced matching of size 2. Namely, we want a
removal lemma stating that if a bipartite graph has few bi-induced copies of M2, then it is close to
a generalized half-graph.

Lemma 6.3. For every ε > 0 there is η = poly(ε) > 0 such that if a bipartite graph G = (X,Y )
has at most η|X|2|Y |2 bi-induced copies of M2, then G can be made into a generalized half-graph by
adding/deleting at most ε|X||Y | edges.

One can prove Lemma 6.3 by using (a bipartite version of) Theorem 4.7. In fact, Theorem 4.7
implies a general induced removal lemma in the setting of bipartite graphs, i.e., it works for any
forbidden bi-induced subgraph, and not M2. However, generalized half-graphs are simple enough
that one can give a direct argument without using Theorem 4.7. The following proof is due to de
Joannis de Verclos.29

Proof of Lemma 6.3. Observe that in a generalized half-graph (X,Y ), either there is x ∈ X with

27This is a standard double-counting argument used to go from an “abundance statement” in terms of sampling to
an “abundance statement” in terms of the number of copies.

28Note that we cannot say anything about the bipartite graph between a clique and an independent set, because
every split graph is induced C4-free, so this bipartite graph can be arbitrary.

29It is taken from a paper of de Joannis de Verclos showing that the property of being a chordal graph has a
polynomial removal lemma.
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no neighbors in Y , or there is y ∈ Y adjacent to all vertices in X.30

Now, we run the following process: Initialize X0 = X,Y0 = Y . For i ≥ 0, proceed as follows: If
there is x ∈ Xi with at most ε|Y | neighbors in Yi, delete all edges between x and Yi, delete x and
continue with the remaining subgraph; i.e., set Xi+1 = Xi \ {x}, Yi+1 = Yi. Similarly, if there is
y ∈ Yi which has at most ε|X| non-neighbors in Xi, add all possible edges between y and Xi, delete
y and continue with the remaining subgraph; i.e., set Xi+1 = Xi, Yi+1 = Yi \ {y}.

Observe that if this process exhausts the entire vertex-set X ∪Y , then we turned the graph into a
generalized half-graph by adding/deleting at most 2ε|X||Y | edges. So suppose that the process stops
at some step i. This means that every x ∈ Xi has at least ε|Y | neighbors in Y , and every y ∈ Yi has
at least ε|X| neighbors in X. In particular, |Xi| ≥ ε|X|, |Yi| ≥ ε|Y |. Sample a subset X ′ ⊆ Xi and
Y ′ ⊆ Yi of size q :=

10
ε log 1

ε each. The probability that some x ∈ X ′ has no neighbor in Y ′ is at most
q(1− ε)q ≤ 1

3 , and similarly, the probability that some y ∈ Y ′ has no neighbor in X ′ is at most 1
3 . It

follows that with probability at least 1
3 , (X

′, Y ′) is not a generalized half-graph, and hence contains
a bi-induced M2. Using a double counting argument (similar to the one used in the proof of Lemma

6.2), one can now deduce that there are at least 1
3q4

|Xi|2|Yi|2 ≥ ε4

3q4
|X|2|Y |2 bi-induced copies of M2.

So we can take η = ε4

3q4
. ■

Combining all of the above, we can obtain the following result on the structure of graphs with
few induced C4’s.

Lemma 6.4. For every β, γ > 0 there is ζ = poly(β, γ) such that the following holds. If G is an n-
vertex graph with at most ζn4 induced copies of C4, then there is a partition V (G) = U1∪· · ·∪Uk∪W
with k ≤ poly(1/β), and there exists a graph G′ on V (G), satisfying the following:

1. In G′, U1, . . . , Uk are cliques, W is an independent set, and all pairs (Ui, Uj), 1 ≤ i < j ≤ k,
are generalized half-graphs.

2. G′ is obtained from G by adding/deleting at most βn2 edges in total, and at most γn2 inside
U := U1 ∪ · · · ∪ Uk.

The distinction in Item 2 – between the total number of edge-changes and their number inside U –
is important. The reason is a delicate dependence between the parameters. In the proof of Theorem
3.5, we will start with a given graph G which is ε-far from being induced-C4-free, and apply Lemma
6.4 to this graph. We will then first clean G′[U ], turning it to an induced-C4-free graph G′′[U ], by
adding/deleting only few edges (βn2, say). After that, we will argue that one can make few ( ε2n

2,
say31) changes between U and W to make the entire graph induced-C4-free; if not, then G′′ has
many induced-C4-copies. But to complete the proof, we need to find many induced-C4-copies in G,
not G′′. To achieve this, we will need to choose β small enough compared to ε so that the at most
3βn2 (say) edge-changes made to G to obtain G′′ do not ruin all of the induced C4’s we find in G′′.
Indeed, an added/deleted edge can belong to at most n2 induced C4’s, so we are fine if we find at
least 4βn4 induced C4’s in G

′′.

Going back one step – i.e., to the step of cleaning G′[U ] to obtain G′′[U ] – we again have a
similar phenomenon. The cleaning scheme guarantees that if there is an induced copy of C4 in
G′′[U ], then there are many induced-C4-copies in G′[U ]. However, we need to find induced copies
in G. Consequently, we need to choose γ small enough so that most of the induced-C4-copies we

30Indeed, the first case holds if NY (x1) = ∅, and the latter if NY (x1) ̸= ∅. Here, x1, . . . , xm is the ordering of X with
NY (x1) ⊆ NY (x2) ⊆ · · · ⊆ NY (xm).

31So that the overall number of changes in all steps is at most εn2.
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find in G′[U ] are also present in G[U ], as they contain none of the at most γn2 edges which were
added/deleted to turn G[U ] into G′[U ]. This is the reason for having two parameters (i.e., β and γ)
in Item 2 of the lemma. In fact, β will be chosen polynomial in ε, while γ will be exponential in ε
(i.e., of the form 2−poly(1/ε)), since the cleaning step of handling G′[U ] incurs an exponential loss.
The bottom line is that at any step of the proof, we need the number of edge-changes in all previous
steps to be tiny enough so as to not interfere with the copies that we find in the given step.

Proof sketch of Lemma 6.4. We fix δ ≪ γ. Now, apply Lemma 6.2 repeatedly, each time finding

a set U ⊆ V (G) with |U | ≥ β2

8 n and d(U) ≥ 1 − δ, and deleting U from the graph. We can
apply Lemma 6.2 as long as the remaining graph has at least 2βn2 edges. This gives us a partition

V (G) = U1∪· · ·∪Uk∪W such that |Ui| ≥ β2

8 n and d(Ui) ≥ 1−δ for every i ∈ [k], and e(W ) ≤ 2βn2.
Turn each Ui into a clique and W into an independent set. If there is 1 ≤ i < j ≤ k such that
(Ui, Uj) has at least η|Ui|2|Uj |2 bi-induced copies of M2, then we get many induced-C4-copies in
G. There is a subtlety here (similar to the discussion following the statement of Lemma 6.4): the
induced-C4-copies we find are apriori not in G, but in the graph obtained from G by turning the Ui’s
into cliques. However, this change consists of adding at most δ

(|Ui|
2

)
edges inside Ui, so most of the

induced-C4-copies we find are also present in G, provided that we choose δ ≪ η. We conclude that
for every 1 ≤ i < j ≤ k, (Ui, Uj) has less than η|Ui|2|Uj |2 bi-induced copies of M2. Now use Lemma
6.3 (with parameter γ) to turn each (Ui, Uj) into a generalized half-graph. ■

In the remainder of this section, we realize the plan outlined in the two paragraphs following
Lemma 6.4. First, in the following lemma, we handle the step where we handled the edges between
U and W . Recall that at this step, the graph induced by U has already been made induced-C4-free.

Lemma 6.5. For every ε > 0 there is δ = poly(ε) > 0 such that the following holds. Let G be a graph
with a vertex-partition V (G) = U ∪W such that G[U ] is induced-C4-free and W is an independent
set. If G is ε-far to induced-C4-free, then G contains at least δn4 induced copies of C4.

Proof. We delete edges between U and W by doing the following for every w ∈ W . Let Mw be a
maximal anti-matching in G[NU (w)]; namely, Mw is a maximal collection of non-edges contained in
NU (w). Delete all edges between u and the vertices participating inM . Note that by the maximality
of M , in the remaining graph it holds that NU (w) is a clique. This implies that the remaining graph
is induced C4-free.

32 Since G is assumed to be ε-far from induced C4-free, we get that∑
w∈W

|Mw| ≥
ε

2
n2. (2)

Now fix any w ∈W and write Mw = {x1y1, . . . , xkyk}. Observe that since G[U ] has no induced C4,
for every 1 ≤ i < j ≤ k it holds that one of xixj , xiyj , yixj , yiyj is not an edge. Hence, there are at

least k +
(
k
2

)
≥ k2/2 = |Mw|2/2 induced cherries containing w as the center and two vertices from

U .33 By (2) and Jensen’s inequality, the total number of these cherries is at least

1

2

∑
w∈W

|Mw|2 ≥
1

2
· |W | ·

(
εn2/2

|W |

)2

≥ ε2

8
n3.

32Indeed, there is no induced C4 inside U by assumption, and there is no induced C4 containing a vertex of W
because C4 has no vertex whose neighborhood is a clique.

33Here, by an induced cherry we mean a triple w, x, y with wx,wy ∈ E(G) and xy /∈ E(G). The vertex w is called
the center of the cherry.
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We can now use the lower bound on the number of induced cherries to count induced copies of
C4. Indeed, by another standard application of Jensen’s inequality (this time summing over pairs
of vertices in W ), we get that there are poly(ε)n4 induced copies of C4. Here we use that W is
independent. ■

Proof sketch of Theorem 3.5. Apply Lemma 6.4 to get U1, . . . , Uk,W . We need the following
fact:

Claim 6.6. Consider a generalized half-graph (X,Y ). There are partitions X = X1 ∪ · · · ∪Xt and
Y = Y1 ∪ · · · ∪ Yt with t = O(1/β), such that all pairs (Xi, Yj) are complete or empty, except for a
set of pairs with total weight at most β|X||Y |.34

The proof is left to the reader. To illustrate the idea, note that if (X,Y ) is in fact a half-
graph, meaning that X = {x1, . . . , xm}, Y = {y1, . . . , ym} and xiyj ∈ E if and only if i < j, then
partitioning X and Y into equal-size intervals X1, . . . , Xt and Y1, . . . , Yt (where an interval is with
respect to the orderings x1, . . . , xm and y1, . . . , ym), we get a partition where (Xi, Yj) is complete or
empty unless i = j.

We now take, for every 1 ≤ i < j ≤ k, partitions of Pij and Pji of Ui and Uj , respectively,
as given by the claim. Next, we take the common refinement of all of these partitions. One can
show that the resulting partition is β-homogeneous. Note that the size of the partition is roughly
2k = 2poly(1/β) = 2poly(1/ε). This is the only place in the argument where we incur an exponential
loss. Having found a β-homogeneous partition of G′[U ], we can proceed as in the scheme described
in Section 3; or, even more similarly, as done in the proof of Theorem 4.9. This allows us to clean
the graph G′[U ] to make it induced-C4-free, or else find many induced-C4-copies in G

′[U ]. As a last
step, we apply Lemma 6.5 to handle the edges between U and W . ■

7 Hypergraph regularity and VC-dimension for hypergraphs

In this section we consider the extensions of the notions of regularity and VC-dimension to hyper-
graphs. For simplicity, we consider 3-uniform hypergraphs, but all material covered in this section
extends to higher uniformity.

7.1 Regularity

What is the appropriate notion of regularity for 3-uniform hypergraphs? A natural attempt is as
follows: A 3-partite 3-graph H = (X,Y, Z) is ε-regular if for every X ′ ⊆ X,Y ′ ⊆ Y, Z ′ ⊆ Z with
|X′|
|X| ,

|Y ′|
|Y | ,

|Z′|
|Z| ≥ ε, it holds that |d(X ′, Y ′, Z ′)− d(X,Y, Z)| ≤ ε, where

d(X,Y, Z) :=
e(X,Y, Z)

|X||Y ||Z|

is the density of (X,Y, Z). This notion of regularity is called weak regularity (for reasons that we shall
see shortly). One can indeed prove a regularity lemma with respect to this notion; the statement and
its proof are straightforward generalizations of Szemerédi’s regularity lemma (Theorem 1.8). The
problem, however, is that this notion of regularity is not strong enough to imply a counting lemma. To
see this, consider the following key example: Take random bipartite graphs E ⊆ X × Y , F ⊆ X ×Z
and G ⊆ Y × Z (with edge-probability 1

2 , say, though this will not be important). Define the

34The weight of (Xi, Yj) is |Xi||Yj |.
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hypergraphH to consist of all triangles formed by E,F,G, i.e., xyz ∈ E(H) if xy ∈ E, xz ∈ F, yz ∈ G.
This hypergraph H is weakly regular. Indeed, for all linear-sized sets X ′ ⊆ X,Y ′ ⊆ Y,Z ′ ⊆ Z, the
density of triangles between (X ′, Y ′, Z ′) is very close to that of (X,Y, Z), because the graphs E,F,G
are random. However, H does not contain a tri-induced copy of every fixed-size 3-partite 3-graph.35

Indeed, let K be the 3-partite 3-graph obtained from K
(3)
2,2,2 by deleting one edge. If, by contradiction,

x1, x2, y1, y2, z1, z2 form a tri-induced copy of K in H (with x1, x2 ∈ X and so on), then all pairs xiyj
(1 ≤ i, j ≤ 2) belong to E, and similarly all pairs xizj belong to F and all pairs yizj to G. But then

this is a copy of K
(3)
2,2,2 instead of an induced copy of K. So we see that the analogue of Lemma 1.7

fails for weak regularity.36

Let us now introduce a stronger notion of regularity which does admit a counting lemma. Consider
a tripartite graph with parts X,Y, Z consisting of E ⊆ X × Y , F ⊆ X × Z and G ⊆ Y × Z. Let
△(E,F,G) denote the set of triangles in G, i.e., the set of triples (x, y, z) ∈ X × Y × Z with
xy ∈ E, xz ∈ F, yz ∈ G. Now let H be a 3-partite 3-graph on X,Y, Z. The density of H with respect
to (E,F,G) is defined as

d(H | E,F,G) := |E(H) ∩△(E,F,G)|
|△(E,F,G)|

.

Namely, the density is the fraction of (E,F,G)-triangles which are edges of H. The definition of
regularity in the 3-graph regularity lemma is with respect to this density. That is, we require that
for every E′ ⊆ E,F ′ ⊆ F,G′ ⊆ G, if △(E′, F ′, G′) ≥ ε△(E,F,G), it holds that∣∣d(H | E′, F ′, G′)− d(H | E,F,G)

∣∣ ≤ ε.

In fact, the known proof of the 3-graph counting lemma requires a somewhat stronger version
of the above: We say that H is (ε, r)-regular with respect to (E,F,G) if for every E1, . . . , Er ⊆
E,F1, . . . , Fr ⊆ F,G1, . . . , Gr ∈ G with

∑r
i=1△(Ei, Fi, Gi) ≥ ε△(E,F,G), it holds that∣∣∣∣ |E(H) ∩

⋃r
i=1△(Ei, Fi, Gi)|

|
⋃r

i=1△(Ei, Fi, Gi)|
− d(H | E,F,G)

∣∣∣∣ ≤ ε.

In order to make use of the ε-regularity of H with respect to (E,F,G), we have to be able to
count the (E,F,G)-triangles. To this end, we require that the bipartite graphs E,F,G themselves
are regular.37

The 3-graph regularity lemma supplies vertex partitions38 of X,Y, Z as well as pair partitions
of X ′ × Y ′, X ′ × Z ′, Y ′ × Z ′ for any choice of vertex-parts X ′ ⊆ X,Y ′ ⊆ Y,Z ′ ⊆ Z. The lemma
guarantees that for “most”39 choices of vertex-parts X ′, Y ′, Z ′ and pair-parts E ⊆ X ′ × Y ′, F ⊆

35A tri-induced copy of a 3-partite 3-graph K = (A,B,C) is defined in the natural way: it is an injection φ : V (K) →
V (H) such that φ(A) ⊆ X,φ(B) ⊆ Y, φ(C) ⊆ Z, and for every (a, b, c) ∈ A × B × C, abc ∈ E(K) if and only if
φ(a)φ(b)φ(c) ∈ E(H).

36Another classical example to the counting lemma failing is as follows. Take a random tournament T on n vertices,
and consider the 3-uniform hypergraph H on V (T ) whose edges are the cyclic triangles in T . It can be shown that H
is weakly-regular (due to the fact that T is random), but any 4 vertices of H contain at most 2 edges (because any 4

vertices in a tournament contain at most 2 cyclic triangles). In particular, H does not contain K
(3)
4 (or even K

(3)
4 − e).

37I.e., they should be regular enough so that we may apply the graph counting lemma (Lemma 1.3). This means
that the degree of regularity should be small enough as a function of the densities of E,F,G.

38The goal of the vertex partitions is to make the parts of the pair partitions regular.
39“Most” means the following: If we sample (x, y, z) ∈ X × Y × Z uniformly at random and consider the unique

vertex- and pair-parts containing (x, y, z), then these have the desired property with probability at least 1−ε. In other

words, (E,F,G) is weighted by |△(E,F,G)|
|X||Y ||Z| .
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X ′ × Z ′, G ⊆ Y ′ × Z ′, it holds that E,F,G are δ-regular (for a suitable small enough δ) and H is
(ε, r)-regular with respect to E,F,G.40

Just as in the graph case, the proof of the 3-graph regularity lemma proceeds via density increment:
if H is not ε-regular with respect to many triples of pair-parts (E,F,G), then one can refine the
pair partition and thus increase the energy function. One then needs to apply the graph regularity
lemma to the new pair parts to maintain the property that all pair parts are regular. This in turn
refines the vertex partition. The repeated applications of graph regularity result in a Wowzer-type
bound. The wowzer function is the iterated tower function, i.e., wowzer(x) = tower(wowzer(x− 1)).

7.2 VC-dimension

Recall that a shattered set in a graph is a vertex-set X = {x1, . . . , xd} such that for every I ⊆ [d],
there is a vertex yI such that {i ∈ [d] : xiyI ∈ E} = I. In 3-uniform hypergraphs, a shattered set
will consist of pairs instead of vertices; the rest of the definition is very similar. Namely, a set of
pairs {e1, . . . , ed} in a 3-graph H (so ei ∈

(
V (H)

2

)
for every 1 ≤ i ≤ d) is shattered if for every I ⊆ [d],

there is a vertex yI ∈ V (H) such that ei ∪ {yI} ∈ E(H) if and only if i ∈ I.

As e1, . . . , ed are now pairs (instead of vertices), they themselves carry structure, i.e., of a graph.
Hence, we can have different definitions of VC-dimension depending on the structure of shattered
sets which we are considering.

Definition 7.1. text

1. The strong VC-dimension of H is the maximum size of a shattered set of pairs e1, . . . , ed (here
there are no restrictions on e1, . . . , ed).

41

2. The VC1-dimension (also known as slicewise VC-dimension) of H is the maximum size of a
shattered set e1, . . . , ed which forms a star.

3. The VC2-dimension of H is the maximum size of a shattered set e1, . . . , ed which forms a
complete bipartite graph.

For convenience, in what follows we often consider 3-partite 3-graphs (instead of general 3-graphs),
but all material applies to general 3-graphs as well.

Fox, Pach and Suk proved that hypergraphs with bounded strong VC-dimension have small ho-
mogeneous partitions:

Theorem 7.2 (Fox-Pach-Suk 2019). If H = (X,Y, Z) has strong VC-dimension d, then it has
an ε-homogeneous equipartition of size at most (1/ε)O(d). Namely, there are equipartitions X =
X1 ∪ · · · ∪Xt, Y = Y1 ∪ · · · ∪ Yt, Z = Z1 ∪ · · · ∪Zt, where t ≤ (1/ε)O(d), such that for all but at most
εt3 of the triples (i, j, k) ∈ [t]3 it holds that d(Xi, Yj , Zk) ≤ ε or d(Xi, Yj , Zk) ≥ 1− ε.

Thus, strong VC-dimension behaves similarly to the graph case.

Let us now consider VC1- and VC2-dimension. Note that if a hypergraph H has unbounded VC2-
dimension, then it contains a tri-induced copy of every 3-partite 3-graph K = (A,B,C). Indeed, first
map A×B onto a shattered complete bipartite graph, denoting the mapping by φ, and then, for every
c ∈ C, take a vertex zc ∈ V (H) which makes an edge precisely with the pairs {φ(a)φ(b) : abc ∈ E(K)}.

40For the proof of the counting lemma, the parameter r must also depend on (i.e., be large enough with respect to)
the densities of E,F,G.

41The term “strong VC-dimension” is not standard. I have not found a better name for this definition.
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Thus, in this sense, VC2-dimension is analogous to the graph case: bounded VC2-dimension is
equivalent to excluding tri-induced copies of a fixed 3-partite 3-graph, just as bounded (graph)
VC-dimension is equivalent to excluding bi-induced copies of a fixed bipartite graph. By the same
considerations, bounded VC1-dimension is equivalent to excluding tri-induced copies of a fixed 3-
partite 3-graph K = (A,B,C) where |A| = 1. In other words, bounded VC1-dimension is equivalent
to all link graphs having bounded VC-dimension.42

It turns out that bounded VC1-dimension (which is a weaker assumption than bounded strong
VC-dimension) also implies the existence of ε-homogeneous vertex-partitions. This was first proved
by Chernikov and Towsner, without any quantitative bound on the size of the partition. A double
exponential bound 22

poly(1/ε)
was subsequently proved by Terry. Very recently, this was improved to

an exponential bound:

Theorem 7.3 (Gishboliner-Shapira-Wigderson). If H = (X,Y, Z) has bounded VC1-dimension, then
it has an ε-homogeneous equipartition of size at most 2poly(1/ε).

A construction by Terry shows that an exponential bound is best possible.43 The following remains
open:

Conjecture 7.4. If H = (X,Y, Z) has bounded VC1-dimension, then there are X ′ ⊆ X,Y ′ ⊆ Y,Z ′ ⊆
Z with |X′|

|X| ,
|Y ′|
|Y | ,

|Z′|
|Z| ≥ poly(ε) such that d(X ′, Y ′, Z ′) ≤ ε or d(X ′, Y ′, Z ′) ≥ 1− ε.

Proof sketch of Theorem 7.3. For simplicity, suppose that |X| = |Y | = |Z| = n. Fix any pair
(x, y) ∈ X × Y . Consider the link LH(x), which is a bipartite graph between Y and Z. As H has
bounded VC1-dimension, LH(x) has bounded VC-dimension. Hence, by (the bipartite version of)

Lemma 4.4, there is a partition Y = Y
(x)
1 ∪ · · · ∪ Y (x)

s , s = poly(1/ε), such that two vertices y1, y2
in the same part satisfy |NZ(y1)△NZ(y2)| ≤ εn, where the neighborhoods are in LH(x). In other
words, |NZ(x, y1)△NZ(x, y2)| ≤ εn, where the neighborhoods are in H. For simplicity, suppose

that the partition Y
(x)
1 ∪ · · · ∪ Y (x)

s is an equipartition (this can be easily arranged by allowing one

exceptional part). Also, without loss of generality, suppose that y ∈ Y
(x)
1 . Pick any y′ ∈ Y

(x)
1 , and

now consider LH(y), which is a bipartite graph between X and Z. By the same argument as above,

we get an equipartition X = X
(y′)
1 ∪ X

(y′)
s such that two vertices x1, x2 in the same part satisfy

|NZ(x1, y
′)△NZ(x2, y

′)| ≤ εn. Without loss of generality, x ∈ X
(y′)
1 . Now, for every x′ ∈ X

(y′)
1 , we

have, by the triangle inequality:

|NZ(x
′, y′)△NZ(x, y)| ≤ |NZ(x

′, y′)△NZ(x, y
′)|+ |NZ(x, y

′)△NZ(x, y)| ≤ 2εn.

Also, the number of choices for (x′, y′) is (n/s)2. Summarizing, for every pair44 (x, y) ∈ X×Y , there
are at least (n/s)2 pairs (x′, y′) ∈ X × Y with |NZ(x

′, y′)△NZ(x, y)| ≤ 2εn.

Now sample f1, . . . , fr ∈ X × Y uniformly at random, where r = s2 log 1
ε , and define Ei :=

{(x, y) ∈ X × Y : |NZ(x, y)△NZ(fi)| ≤ 2εn}. For every i ∈ [r], very two pairs in Fi have the same

42The link LH(x) of a vertex x is the graph {yz : xyz ∈ E(H}.
43This construction is as follows: Partition X,Y into equal-sized parts X1, . . . , Xk and Y1, . . . , Yk, respectively, where

k = (1/ε)0.1, say. For each i = 1, . . . , k, take a uniformly random subset Zi ⊆ Z and add all edges in Xi × Yi × Zi

(the sets Z1, . . . , Zk are chosen independently). One can show that any ε-homogeneous partition of this hypergraph

has size at least 2(1/ε)
Ω(1)

.
44In fact, we can only guarantee this for almost every pair, because of the aforementioned exceptional sets. But we

ignore this technicality.
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neighborhood in Z, up to an error of 4εn (by the triangle inequality). Also, for a given (x, y) ∈ X×Y ,
we have

P[(x, y) /∈ E1 ∪ · · · ∪ Er] ≤
(
1− 1

s2

)r

≤ ε.

In conclusion, we get a partition X × Y = E0 ∪ E1 ∪ · · · ∪ Er such that |E0| ≤ εn2, and for every
i ∈ [r] and (x, y) ∈ Ei, |NZ(x, y)△NZ(fi)| ≤ 2εn.

Now, let Zi := NZ(fi), and let PZ be the Venn diagram of the sets Z1, . . . , Zr. This is a partition of
Z into at most 2r = 2poly(1/ε) sets.45 We expect a homogeneous behavior between each Ei (1 ≤ i ≤ r)
and a typical part of PZ .

The proof proceeds by repeating the above argument for X×Z and Y ×Z. In the former case we
obtain a partition of X × Z and a partition PY of Y , and in the latter case we obtain a partition of
Y ×Z and a partition PX of X. One can now show that (PX ,PY ,PZ) is an ε-homogeneous partition
of H.46 We omit the details. ■

Moving to VC2-dimension, what can we say about a hypergraph with bounded VC2-dimension?
Recall the construction described in Section 7.1 (arising from random graphs). This construction
has bounded VC2-dimension but no ε-homogeneous partition (even for ε = 0.49) of size independent
of n. So bounded VC2-dimension does not imply the existence of (bounded-size) ε-homogeneous
vertex partitions. Observe, however, that this construction does have a homogeneous pair partition:
Partition X×Y into E1 := E,E2 := X×Y \E, and similarly partition X×Z into F1, F2 and Y ×Z
into G1, G2. Then for every i, j, k = 1, 2, the hypergraph H is homogeneous (i.e., complete or empty)
over △(Ei, Fj , Gk). It turns out that this is a general phenomenon:

Theorem 7.5 (Chernikov-Towsner 2020). If H = (X,Y, Z) has bounded VC2-dimension, then there
are equipartitions X×Y = E1∪· · ·∪Et, X×Z = F1∪· · ·∪Ft, Y ×Z = G1∪· · ·∪Gt, where t depends
only on ε, such that for all but εt3 of the triples (Ei, Fj , Gk) it holds that d(H | Ei, Fj , Gk) ≤ ε or
d(H | Ei, Fj , Gk) ≥ 1− ε.

Theorem 7.5 can be deduced from the hypergraph regularity lemma, as follows: Taking a regular
partition, one can show that for a regular triple (Ei, Fj , Gk), the density of H over △(Ei, Fj , Gk) is
at most ε or at least 1− ε. Indeed, otherwise H contains a tri-induced copy of every fixed 3-partite
3-graph, by a counting lemma analogous to Lemma 1.7.

In fact, the result of Chernikov and Towsner is more general. For each uniformity k ≥ 2 and
1 ≤ ℓ ≤ k − 1, they define a suitable notion of VCℓ-dimension, and show that a k-graph with
bounded VCℓ-dimension has an ε-homogeneous partition of uniformity ℓ, i.e., a partition of all ℓ-sets.

Problem 7.6. Does Theorem 7.5 hold with t = poly(1/ε)?

45This step is where the exponential bound in Theorem 7.3 comes from.
46More precisely, ε′-homogeneous for some ε′ = εc, c > 0 constant.
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