
Removal Lemmas: Summer School 2025

2 When is the removal lemma polynomial?

For which graphs H does it hold that the parameters in the H-removal lemma satisfy δH(ε) =
poly(ε)? A classical result in extremal graph theory, namely the Kővári-Sós-Turán theorem, shows
that this is the case if H is bipartite.

Theorem 2.1 (Kővári-Sós-Turán theorem, supersaturation form). An n-vertex graph with εn2 edges
contains at least poly(ε)ns+t copies of Ks,t.

Returning to the H-removal lemma for a bipartite H, observe that if G is ε-far from H-free then
G (trivially) contains at least εn2 edges, hence G contains poly(ε)nv(H) copies of H by Theorem 2.1.
Thus, if H is bipartite then the H-removal lemma is polynomial. Alon proved that the converse also
holds, i.e., that bipartite graphs are the only ones which admit a polynomial removal lemma.

Theorem 2.2 (Alon 2002). For a graph H, δH(ε) = poly(ε) if and only if H is bipartite.

We will first prove Theorem 2.2 in the case that H is an odd cycle. For this, we need a number-
theoretic construction.

Theorem 2.3. Let k ≥ 3. There is a set S ⊆ [n] with |S| ≥ n1−o(1), such that for every x1, . . . , xk ∈
S, if x1 + · · ·+ xk−1 = (k − 1)xk, then x1 = · · · = xk.

The case k = 3 is Behrend’s construction of a large set with no 3-term arithmetic progressions.
The general case is a straightforward generalization.

Proof of Theorem 2.3. Write n = dt for d, t to be chosen later. Represent the numbers 1, . . . , n
in base d. I.e., for x ∈ [n], write

x =
t−1∑
i=0

aid
i,

where 0 ≤ ai ≤ d− 1. Write v(x) := (a0, . . . , at−1). Let U be the set of all x for which a0, . . . , at−1 ≤
d−1
k−1 . This property guarantees that for x1, . . . , xk−1 ∈ U , we have

v(x1 + · · ·+ xk−1) = v(x1) + · · ·+ v(xk−1).

I.e., there is no carry when summing x1, . . . , xk−1. Similarly, v((k−1) ·xk) = (k−1) ·v(xk) for every
xk ∈ U .

Now fix r ≥ 1, to be chosen later, and take S to be the set of all x ∈ U with ∥v(x)∥ = r, where
∥·∥ is the Euclidean norm. Suppose that x1, . . . , xk ∈ S satisfy x1 + · · ·+ xk−1 = (k− 1)xk. Putting
vi = v(xi), we get v1+ · · ·+ vk−1 = (k− 1)vk. Now we take norms. The norm of the RHS is (k− 1)r.
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For the LHS, by Cauchy-Schwarz we have ∥v1+ · · ·+vk−1∥ ≤
√∑k−1

i=1 ∥vi∥2 ·
√
k − 1 = (k−1)r, with

equality if and only if v1 = · · · = vk−1. So we must have v1 = · · · = vk and hence x1 = · · · = xk.
1

Now we estimate the size of S. For every x ∈ [n], we have ∥x∥2 ≤ td2, so the number of choices
for r is at most td2. By pigeonhole, there exists r such that

|S| ≥ |U |
td2

≥ (d/k)t

td2
=

n

kttd2
.

Choose t, d such that kt = d. As dt = n, this gives t =
√

log(n)
log(k) , d = e

√
log(k) log(n). So

|S| ≥ n

eOk(
√
logn)

= n1−o(1).

■

Now we prove Theorem 2.2 for odd cycles.

Theorem 2.4. For every odd k ≥ 3, there exists an n-vertex graph G with εn2 edge-disjoint copies
of Ck, but only ε

ω(1)nk copies of Ck in total.

Proof. Let ε > 0. Let S ⊆ [n] be the set given by Theorem 2.3. Choose n such that |S| = εn.
As |S| = n1−o(1), this means that n = (1/ε)ω(1). Define a graph with k parts V1, . . . , Vk, each of
size kn and identified with [kn].2 For each y ∈ [n] and x ∈ S, add a copy of Ck on the vertices
v1 = y, v2 = y + x, v3 = y + 2x, . . . , vk = y + (k − 1)x (so vi = y + (i − 1)x) such that vi ∈ Vi.

3

Denote this copy by Cx,y. We claim that the copies Cx,y are edge-disjoint. Indeed, even stronger,
any two such copies share at most one vertex, because if Cx,y and Cx′,y′ have the same vertex in Vi
and Vj , then y + (i− 1)x = y′ + (i− 1)x′ and y + (j − 1)x = y′ + (j − 1)x′, and solving this system
of equations gives x = x′, y = y′. The number of copies Cx,y is n|S| ≥ εn2. Thus, the graph has a
collection of εn2 edge-disjoint copies of Ck.

Now we bound the total number of copies of Ck. Crucially, as k is odd, we can only have copies
of Ck of the form (v1, . . . , vk, v1) with vi ∈ Vi.

4 Now consider such a copy v1, . . . , vk. Then for each
1 ≤ i ≤ k − 1 there are yi, xi with vi, vi+1 ∈ Cxi,yi , and there are yk, xk with vk, v1 ∈ Cxk,yk . Then

x1 + · · ·+ xk−1 = vk − v1 = (k − 1)xk.

By the property of the set S, we get x1 = · · · = xk =: x (from which we can also deduce that
y1 = · · · = yk). So (v1, . . . , vk) ∈ Cx,y1 . This shows that any copy of Ck in the graph is one of the
“original” copies Cx,y we put in. Their number is

n|S| ≤ n2 ≤ |V (G)|k

n
≤ εω(1)|V (G)|k.

■

Remarks:

1What we are using here is that S is a sphere, and a sphere has no point in the convex hull of other points (unless
all points are equal.

2Thus, we are actually defining a graph on k2n vertices, but we can of course adjust the parameters.
3Note that we choose each Vi to be [kn] so that the numbers vi = y + (i− 1)x “fit” in Vi.
4What we are using here is that Ck is not homomorphic to any of its proper subgraphs.
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• We can take blowups of the graph defined in the proof of Theorem 2.4 to get constructions of
any (large enough) size.

• The above proof gives a connection between the triangle removal lemma and the problem of
estimating the largest possible size r3(n) of a subset of [n] with no 3-term arithmetic progression.
Indeed, in the proof, we use a lower bound on r3(n) (via Theorem 2.3) to show that the
triangle removal lemma is not polynomial. In the other direction, one can use the triangle
removal lemma to show that r3(n) = o(n), which is the statement of Roth’s theorem. We note,
however, that this gives a very poor quantitative bound of roughly r3(n) ≤ n/ log∗(n). Much
better bounds are known.

To prove Theorem 2.2 for a general non-bipartite H, we would like to use the same strategy as in
Theorem 2.4. Namely, if V (H) = {1, . . . , h}, we construct an H-partite graph with parts V1, . . . , Vh
and put a copy of H on y, y + x, . . . , y + (h − 1)x for y ∈ [n], x ∈ S. We will also use that H has
an odd cycle. The issue is that we want to make sure that every copy of H is of the form v1, . . . , vh
with vi ∈ Vi (and vi plays the role of i ∈ [h]). Note that the construction is homomorphic to H
via the homomorphism Vi 7→ i.5 Thus, what we want is that H has no homomorphism to a proper
subgraph of itself. This might not be true of H itself, but there is a maximal subgraph of H which
has this property, and we will exploit this for our construction. Let us now define this subgraph.

Definition 2.5. The core of H is the minimal subgraph K of H (in terms of the number of vertices)
such that there is a homomorphism from H to K.

We will show soon that the core is well defined, in the sense that K is unique up to isomorphism.
Observe that K is not homomorphic to any of its proper subgraphs. Indeed, if there is a homomor-
phism ψ : K → J for J with V (J) ⊊ V (K), then by taking a homomorphism φ : H → K, we get a
homomorphism ψ ◦ φ from H to J , contradicting the minimality of K. Thus, every homomorphism
from K to itself is injective and hence an isomorphism. Similarly, we can show that the core is unique
up to isomorphism: If K1,K2 are both cores of H, then there are homomorphisms φ1 : K2 → K1

and φ2 : K1 → K2 (we obtain φi by taking a homomorphism from H to Ki and restricting it to
K3−i). Now, φ1 ◦ φ2 is a homomorphism from K1 to itself and hence an isomorphism, and similarly
for φ2 ◦ φ1. It follows that φ1, φ2 are bijective and hence isomorphisms.

Note that if H is bipartite (and has at least one edge), then the core of H is an edge. On the
other hand, if H is not bipartite then neither is its core. Using cores, we can now prove Theorem
2.2. The idea is to do the construction for the core of H, and then blow it up by a constant factor
to get a construction for H.

Proof of Theorem 2.2. Let K be the core of H. Then K is also not bipartite. Write V (K) =
{1, . . . , k}, where (1, . . . , ℓ, 1) is an odd cycle. Take S ⊆ [n] from Theorem 2.3 (with parameter ℓ),
and define a graph G with sides V1, . . . , Vk by doing the following: For each y ∈ [n] and x ∈ S, put
a copy Kx,y of K on v1, . . . , vk, where vi = y + (i − 1)x ∈ Vi (in this copy, vi plays the role of i).
As in the proof of Theorem 2.4, the copies Kx,y are edge-disjoint, and hence G has εn2 edge-disjoint
copies of K.

On the other hand, since K is a core, every copy of K in G is of the form v1, . . . , vk with vi ∈ Vi
playing the role of i. Hence, for each such copy v1, . . . , vk, the vertices v1, . . . , vℓ makes an odd
cycle. By the same argument as in the proof of Theorem 2.4, each such odd cycle is of the form

5A homomorphism from a graph G to a graph H is a mapping φ : V (G) → V (H) such that φ(x)φ(y) ∈ E(H) for
every xy ∈ E(G).
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(y, y + x, . . . , y + (ℓ − 1)x) for some y ∈ [n], x ∈ S, and hence the number of such odd cycles is at
most n2. Thus, the total number of copies of K in G is at most n2 · nk−ℓ ≤ nk/n ≤ εω(1)nk.

To obtain a construction for H, take the above construction for K and blow it up by a factor of
h := |V (H)|. Then each copy Kx,y of K gives rise to a copy of H (because H is homomorphic to
K, i.e., contained in a blowup of K). Hence, the resulting graph (which has O(n) vertices) has εn2

edge-disjoint copies of H. On the other hand, each copy of H must contain a copy of K (because
K is a subgraph of H). Also, the blown-up graph has O(εω(1)nk) copies of K (the only way to get
copies of K is from blowups of copies of K in G, as K is a core). Thus, the total number of copies
of H is O(εω(1)nk) · nh−k = O(εω(1)nh), as required. ■
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