Removal Lemmas: Summer School 2025

1 The regularity and removal lemmas

The graph removal lemma is the following statement:

Theorem 1.1 (Graph removal lemma, Ruzsa-Szemerédi '78). Let H be a fized graph. For every
e > 0 there is § = dg(e) > 0 such that if an n-vertex graph G has at most onv M) copies of H, then
G can be made H-free by deleting at most en® edges.

Remarks:

e We say that G is e-far from being H-free if one has to delete at least en? edges to turn G into
an H-free graph. The contrapositive is that if G is e-far from H-free then G has at least dn?(H)
copies of H.

e Being e-far from H-free is equivalent to having a collection of ©(g)n? edge-disjoint copies of
H. Indeed, if G has such a collection of size en?, then G is e-far (because we have to delete at
least one edge from each H-copy in order to destroy all H-copies in (). In the other direction,
take a maximal collection of edge-disjoint copies of H in (. Deleting all edges of these copies
makes the graph H-free (because of the maximality of the collection). Thus, if the maximal
such collection has size less than ﬁn% then G is not e-far.

The removal lemma is proved using Szemerédi’s regularity lemma, which we now recall. Consider
a bipartite graph with parts X,Y. The density is d(X,Y) := %

Definition 1.2 (Regular pair). A bipartite graph (X,Y) is e-regular if for every X' C X, Y' C Y
with | X'| > ¢|X|, |Y'| > e|Y], it holds that |[d(X',Y") —d(X,Y)| <e.

Regular pairs are “random-like”. Indeed, the definition captures a key property of random graphs:
uniform edge distribution. Another key random-like property of regular pairs is given by the counting

lemma:

Lemma 1.3 (Counting lemma). For every v > 0 there is € > 0 such that if V1,...,V, are disjoint
vertex sets such that all pairs (V;, V;) are e-reqular, then the number of r-cliques vi,...,v, (with
v; € V;) is

T

[Tvi-| I davivp£~]. (1)

i=1 1<i<j<r

Note that (1) (with the error v omitted) is precisely the expected number of r-cliques if the edges
between V; and V; were chosen randomly with probability d(V;,V;), for every 1 < i < j < r. In
many applications, it suffices to have a lower bound for the number of r-cliques. To illustrate how



the proof of the counting lemma works, let us prove such a statement in the case r = 3 (the proof
for general 7 is similar, via induction). We will assume that all densities d(V;,V;) are large enough
in terms of .1

Lemma 1.4. For every d > 0 there is € = d/2 so that if V1,Va, V3 are such that d(V;,V;) > d and
(Vi, V;) is e-reqular for every 1 < i < j < 3, then there are at least (1 — 2¢)(d — €)3|V1||Va||V5| >
(d® — 5¢)|V1||Va|| V3] triangles.

Proof. First we need the following simple property of regular pairs. The proof is left to the reader.

Claim 1.5. Let (X,Y) be an e-reqular pair with density d = d(X,Y). Then at most €| X| of the

vertices x € X satisfy d’ﬁﬁ‘r) < d—¢e, and at most €| X| of the vertices x € X satisfy d“"éf) >d+e.

Now we prove Lemma 1.4. Fori = 1,2, let B; be the set of vertices v € V3 with dy, (v) < (d—¢)|Vi].
By Claim 1.5, we have |B;| < €|V3]. So |Bj U Ba| < 2¢|V3|. For each v € V3 \ (B; U By), consider
U := Ny, (v) and Uy := Ny, (v). As v ¢ By U Ba, we have |U;| > (d — ¢)|V1| > €|Vi| and similarly
|Ua| > ¢|Va|. By the regularity of (V1,Va), we have d(U;,Usz) > d — ¢, and therefore e(Uy,Uz) >
(d — &)|U1]|Us| > (d — ¢)3|V4]||Vz|. Each edge in E(U;,Us) creates a triangle with v. Doing this for
all (at least (1 — 2¢)|V3|) choices of v € V3 \ (B1 U Ba), we get at least (1 — 2¢)(d — £)3|Vi||Va|| V3]
triangles, as required. [ |

Another version of the counting lemma we will use is as follows.

Definition 1.6 (bi-induced copy). A bi-induced copy of a bipartite graph H = (A, B) in a graph
G is an injection ¢ : V(H) — V(G) such that for every a € A,b € B, ab € E(H) if and only if
v(a)p(b) € E(G). If G is itself bipartite with parts X,Y, then we also require that ¢(A) C X and
o(B)CY.

Note that in the above definition we do not make requirements on the edges inside ¢(A) and ¢(B).

Lemma 1.7. For every integer k and d > 0, there is € > 0 such that the following holds. Consider
a bipartite graph (X,Y) and suppose that d < d(X,Y) <1—d and (X,Y) is e-regular. Then (X,Y)
contains a bi-induced copy of every bipartite graph (A, B) with |Al,|B| < k.

One can deduce the above lemma from Lemma 1.3 as follows: Suppose that A = {aq,...,ar},
B = {b1,...,b;}. Split X into equal parts X1,..., X and Y into equal parts Y7,...,Ys. Define an
auxiliary graph as follows: If a;b; € E then take the edges of G' between X;,Y;, and if a;b; ¢ E then
take the non-edges of G' between X;,Y;. Now apply Lemma 1.3 to this auxiliary graph.

The Szemerédi regularity lemma states that any graph has a vertex partition into a bounded
number of parts, such that most pairs of parts are regular.

Theorem 1.8 (Szemerédi’s regularity lemma 1978). For every € > 0 and tyg > 1, there is T =
T(e,to) such that the following holds. Every graph G on n > T wertices has an equipartition?
V(G) =ViU---UV, with tg <t < T such that all but et* of the pairs (V;,V;), 1 <i < j <t, are
e-regular.

An equipartition as in Theorem 1.8 is called e-regular. Let us give a very rough sketch of the
proof of the regularity lemma.

1Otherwise, i.e. if some d(Vi, V;) is smaller than +, then it is easy to see that the statement of Lemma 1.3 holds
trivially (because the number of r-cliques is at most |Vi|...|V,|d(V;, V})).
2 An equipartition is a partition in which any two parts Vi, V; satisfy ||Vi| — |V;|| < 1.



Proof sketch of Theorem 1.8. For a partition P = {Vi,...,V;} of V(G), we define the mean
square density as

Vil |V
Py = > 'LLJ'd?(Vi,Vj).
1<i<j<t

One shows that:
1. If Q is a refinement of P then ¢(Q) > ¢(P).

2. If P is not e-regular, then there is a refinement Q of P with ¢(Q) > q(P) +&° and |Q] < 2t -,
where t = |P)|.

A proof sketch for Item 2 is as follows: For each pair 1 <1 < j <t such that (V;,V}) is not e-regular,
take Vi; C V5, Vji € Vj such that |Vi;| > €|Vi|, |Vii| > €]V;], and |d(Vi;, Vji) — d(Vi, V})| > €. Now,
for each 1 < i < t, take the common refinement (Venn diagram) of all sets (V;; : j). The resulting
partition is Q. It is easy to see that |Q] < 2! - ¢, and one can show that q(Q) > q(P) + °.

Using Items 1-2, one proves Theorem 1.8 as follows. Start with an arbitrary equipartition Py into
to parts. If P; is not e-regular, use Item 2 to get a refinement P;,1 with ¢(Pir1) > q(P;) +°. As
q(P) <1 for any P, the process has to stop in at most E% steps.

At each iteration, there is also an additional step of turning the partition @ given by Item 2 into
an equipartition, by chopping up the parts of Q into equal-sized sets. One can show that if the
set-size is small enough, this does not decrease ¢(Q) by much. |

What is the bound on the partition-size 1" that we get in Theorem 1.87 The proof is via a
procedure that runs for poly(1/e) steps, and at each step we replace a partition of size ¢ with a
partition of size roughly 2!. Hence, the number of parts is at most tower(poly(1/¢), o), where

k times

2%
»
tower(k, z) = 22 }
Le., the bound is of tower type. Gowers proved that this is inevitable.

Theorem 1.9 (Gowers 1997). There are graphs which require tower(e~°) parts in any e-regular
partition, where ¢ > 0 is a constant.

Let us now prove the removal lemma (Theorem 1.1). For simplicity, we consider the case H = K.

Proof of the triangle removal lemma. Let G be a graph which is y-far from Ks-free. Apply the
regularity lemma with parameters ¢ = /10 and ¢ty = 10/ to obtain an e-regular partition Vi,...,V;
with tg <t <T. We now clean the graph. L.e., we delete the following edges:

1. All edges inside V; for every 1 <i <.
2. All edges between pairs (V;, V;) with d(V;, V;) < 2e.
3. All edges between pairs (V;, V;) which are not e-regular.

The number of edges of type 1 is at most ¢ - ("Q/t) < 22 < 2p2  The number of edges of type

t = 10
2 is at most 2e - 37 ;. [Vi[|Vj] < 2¢(3) < In?. The number of edges of type 3 is at most
et? . (%)2 =en? = 11()”2' So the total number of deleted edges is less than yn?. As G is v-far from

Ks-free, the remaining graph (after the deletion of these edges) still has a triangle. This triangle



cannot contain two vertices from the same part V; (because of Item 1). So suppose that this triangle
has one vertex in each of the sets V;, V;, V.. Then by Items 2-3, all pairs (V;, Vj), (Vi, Vi), (V}, Vi) are
e-regular and have density at least 2¢. By Lemma 1.4, there are at least poly(e)|V;||V;||Vi| triangles.

Now, |Vi||V}||Vk| = (n/t)? > n3/T3, so we can set § := pO;YS(E). [

Note that because of the tower-type parameter dependence in the regularity lemma, the above
proof gives a tower-type dependence for the removal lemma as well. Namely, it shows that in Theorem
1.1, we can take 1/§ = tower(poly(1/e)). This was improved to tower(O(log %)) by Fox. It is a major
open problem to improve this further.



