
Removal Lemmas: Summer School 2025

1 The regularity and removal lemmas

The graph removal lemma is the following statement:

Theorem 1.1 (Graph removal lemma, Ruzsa-Szemerédi ’78). Let H be a fixed graph. For every
ε > 0 there is δ = δH(ε) > 0 such that if an n-vertex graph G has at most δnv(H) copies of H, then
G can be made H-free by deleting at most εn2 edges.

Remarks:

• We say that G is ε-far from being H-free if one has to delete at least εn2 edges to turn G into
an H-free graph. The contrapositive is that if G is ε-far from H-free then G has at least δnv(H)

copies of H.

• Being ε-far from H-free is equivalent to having a collection of Θ(ε)n2 edge-disjoint copies of
H. Indeed, if G has such a collection of size εn2, then G is ε-far (because we have to delete at
least one edge from each H-copy in order to destroy all H-copies in G). In the other direction,
take a maximal collection of edge-disjoint copies of H in G. Deleting all edges of these copies
makes the graph H-free (because of the maximality of the collection). Thus, if the maximal
such collection has size less than ε

e(H)n
2, then G is not ε-far.

The removal lemma is proved using Szemerédi’s regularity lemma, which we now recall. Consider
a bipartite graph with parts X,Y . The density is d(X,Y ) := e(X,Y )

|X||Y | .

Definition 1.2 (Regular pair). A bipartite graph (X,Y ) is ε-regular if for every X ′ ⊆ X,Y ′ ⊆ Y
with |X ′| ≥ ε|X|, |Y ′| ≥ ε|Y |, it holds that |d(X ′, Y ′)− d(X,Y )| ≤ ε.

Regular pairs are “random-like”. Indeed, the definition captures a key property of random graphs:
uniform edge distribution. Another key random-like property of regular pairs is given by the counting
lemma:

Lemma 1.3 (Counting lemma). For every γ > 0 there is ε > 0 such that if V1, . . . , Vr are disjoint
vertex sets such that all pairs (Vi, Vj) are ε-regular, then the number of r-cliques v1, . . . , vr (with
vi ∈ Vi) is

r∏
i=1

|Vi| ·

 ∏
1≤i<j≤r

d(Vi, Vj)± γ

 . (1)

Note that (1) (with the error γ omitted) is precisely the expected number of r-cliques if the edges
between Vi and Vj were chosen randomly with probability d(Vi, Vj), for every 1 ≤ i < j ≤ r. In
many applications, it suffices to have a lower bound for the number of r-cliques. To illustrate how
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the proof of the counting lemma works, let us prove such a statement in the case r = 3 (the proof
for general r is similar, via induction). We will assume that all densities d(Vi, Vj) are large enough
in terms of ε.1

Lemma 1.4. For every d > 0 there is ε = d/2 so that if V1, V2, V3 are such that d(Vi, Vj) ≥ d and
(Vi, Vj) is ε-regular for every 1 ≤ i < j ≤ 3, then there are at least (1 − 2ε)(d − ε)3|V1||V2||V3| ≥
(d3 − 5ε)|V1||V2||V3| triangles.

Proof. First we need the following simple property of regular pairs. The proof is left to the reader.

Claim 1.5. Let (X,Y ) be an ε-regular pair with density d = d(X,Y ). Then at most ε|X| of the
vertices x ∈ X satisfy dY (x)

|Y | < d− ε, and at most ε|X| of the vertices x ∈ X satisfy dY (x)
|Y | > d+ ε.

Now we prove Lemma 1.4. For i = 1, 2, let Bi be the set of vertices v ∈ V3 with dVi(v) < (d−ε)|Vi|.
By Claim 1.5, we have |Bi| ≤ ε|V3|. So |B1 ∪ B2| ≤ 2ε|V3|. For each v ∈ V3 \ (B1 ∪ B2), consider
U1 := NV1(v) and U2 := NV2(v). As v /∈ B1 ∪ B2, we have |U1| ≥ (d − ε)|V1| ≥ ε|V1| and similarly
|U2| ≥ ε|V2|. By the regularity of (V1, V2), we have d(U1, U2) ≥ d − ε, and therefore e(U1, U2) ≥
(d − ε)|U1||U2| ≥ (d − ε)3|V1||V2|. Each edge in E(U1, U2) creates a triangle with v. Doing this for
all (at least (1 − 2ε)|V3|) choices of v ∈ V3 \ (B1 ∪ B2), we get at least (1 − 2ε)(d − ε)3|V1||V2||V3|
triangles, as required. ■

Another version of the counting lemma we will use is as follows.

Definition 1.6 (bi-induced copy). A bi-induced copy of a bipartite graph H = (A,B) in a graph
G is an injection φ : V (H) → V (G) such that for every a ∈ A, b ∈ B, ab ∈ E(H) if and only if
φ(a)φ(b) ∈ E(G). If G is itself bipartite with parts X,Y , then we also require that φ(A) ⊆ X and
φ(B) ⊆ Y .

Note that in the above definition we do not make requirements on the edges inside φ(A) and φ(B).

Lemma 1.7. For every integer k and d > 0, there is ε > 0 such that the following holds. Consider
a bipartite graph (X,Y ) and suppose that d ≤ d(X,Y ) ≤ 1− d and (X,Y ) is ε-regular. Then (X,Y )
contains a bi-induced copy of every bipartite graph (A,B) with |A|, |B| ≤ k.

One can deduce the above lemma from Lemma 1.3 as follows: Suppose that A = {a1, . . . , ak},
B = {b1, . . . , bk}. Split X into equal parts X1, . . . , Xk and Y into equal parts Y1, . . . , Yk. Define an
auxiliary graph as follows: If aibj ∈ E then take the edges of G between Xi, Yj , and if aibj /∈ E then
take the non-edges of G between Xi, Yj . Now apply Lemma 1.3 to this auxiliary graph.

The Szemerédi regularity lemma states that any graph has a vertex partition into a bounded
number of parts, such that most pairs of parts are regular.

Theorem 1.8 (Szemerédi’s regularity lemma 1978). For every ε > 0 and t0 ≥ 1, there is T =
T (ε, t0) such that the following holds. Every graph G on n ≥ T vertices has an equipartition2

V (G) = V1 ∪ · · · ∪ Vt with t0 ≤ t ≤ T such that all but εt2 of the pairs (Vi, Vj), 1 ≤ i < j ≤ t, are
ε-regular.

An equipartition as in Theorem 1.8 is called ε-regular. Let us give a very rough sketch of the
proof of the regularity lemma.

1Otherwise, i.e. if some d(Vi, Vj) is smaller than γ, then it is easy to see that the statement of Lemma 1.3 holds
trivially (because the number of r-cliques is at most |V1| . . . |Vr|d(Vi, Vj)).

2An equipartition is a partition in which any two parts Vi, Vj satisfy ||Vi| − |Vj || ≤ 1.
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Proof sketch of Theorem 1.8. For a partition P = {V1, . . . , Vt} of V (G), we define the mean
square density as

q(P) =
∑

1≤i<j≤t

|Vi||Vj |
n2

d2(Vi, Vj).

One shows that:

1. If Q is a refinement of P then q(Q) ≥ q(P).

2. If P is not ε-regular, then there is a refinement Q of P with q(Q) ≥ q(P) + ε5 and |Q| ≤ 2t · t,
where t = |P|.

A proof sketch for Item 2 is as follows: For each pair 1 ≤ i < j ≤ t such that (Vi, Vj) is not ε-regular,
take Vij ⊆ Vi, Vji ⊆ Vj such that |Vij | ≥ ε|Vi|, |Vji| ≥ ε|Vj |, and |d(Vij , Vji) − d(Vi, Vj)| > ε. Now,
for each 1 ≤ i ≤ t, take the common refinement (Venn diagram) of all sets (Vij : j). The resulting
partition is Q. It is easy to see that |Q| ≤ 2t · t, and one can show that q(Q) ≥ q(P) + ε5.

Using Items 1-2, one proves Theorem 1.8 as follows. Start with an arbitrary equipartition P0 into
t0 parts. If Pi is not ε-regular, use Item 2 to get a refinement Pi+1 with q(Pi+1) ≥ q(Pi) + ε5. As
q(P) ≤ 1 for any P, the process has to stop in at most 1

ε5
steps.

At each iteration, there is also an additional step of turning the partition Q given by Item 2 into
an equipartition, by chopping up the parts of Q into equal-sized sets. One can show that if the
set-size is small enough, this does not decrease q(Q) by much. ■

What is the bound on the partition-size T that we get in Theorem 1.8? The proof is via a
procedure that runs for poly(1/ε) steps, and at each step we replace a partition of size t with a
partition of size roughly 2t. Hence, the number of parts is at most tower(poly(1/ε), t0), where

tower(k, x) = 22
2·
··
2x

}
k times

I.e., the bound is of tower type. Gowers proved that this is inevitable.

Theorem 1.9 (Gowers 1997). There are graphs which require tower(ε−c) parts in any ε-regular
partition, where c > 0 is a constant.

Let us now prove the removal lemma (Theorem 1.1). For simplicity, we consider the case H = K3.

Proof of the triangle removal lemma. Let G be a graph which is γ-far from K3-free. Apply the
regularity lemma with parameters ε = γ/10 and t0 = 10/γ to obtain an ε-regular partition V1, . . . , Vt

with t0 ≤ t ≤ T . We now clean the graph. I.e., we delete the following edges:

1. All edges inside Vi for every 1 ≤ i ≤ t.

2. All edges between pairs (Vi, Vj) with d(Vi, Vj) ≤ 2ε.

3. All edges between pairs (Vi, Vj) which are not ε-regular.

The number of edges of type 1 is at most t ·
(
n/t
2

)
≤ n2

t ≤ γ
10n

2. The number of edges of type
2 is at most 2ε ·

∑
1≤i<j≤t |Vi||Vj | ≤ 2ε

(
n
2

)
≤ γ

5n
2. The number of edges of type 3 is at most

εt2 ·
(
n
t

)2
= εn2 = γ

10n
2. So the total number of deleted edges is less than γn2. As G is γ-far from

K3-free, the remaining graph (after the deletion of these edges) still has a triangle. This triangle
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cannot contain two vertices from the same part Vi (because of Item 1). So suppose that this triangle
has one vertex in each of the sets Vi, Vj , Vk. Then by Items 2-3, all pairs (Vi, Vj), (Vi, Vk), (Vj , Vk) are
ε-regular and have density at least 2ε. By Lemma 1.4, there are at least poly(ε)|Vi||Vj ||Vk| triangles.
Now, |Vi||Vj ||Vk| = (n/t)3 ≥ n3/T 3, so we can set δ := poly(ε)

T 3 . ■

Note that because of the tower-type parameter dependence in the regularity lemma, the above
proof gives a tower-type dependence for the removal lemma as well. Namely, it shows that in Theorem
1.1, we can take 1/δ = tower(poly(1/ε)). This was improved to tower(O(log 1

ε )) by Fox. It is a major
open problem to improve this further.
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