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Abstract

Spectral graph theory studies how the eigenvalues of a graph relate to the structural
properties of a graph. In this paper, we solve three open problems in spectral extremal
graph theory which generalize the classical Turán-type supersaturation results.

• We prove that every m-edge graph G with the spectral radius λ(G) >
√
m contains

at least 1
144

√
m triangles sharing a common edge. This result confirms a conjecture of

Nikiforov, and Li and Peng. Moreover, the bound is optimal up to a constant factor.

• Next, for m-edge graph G with λ(G) >
√
(1− 1

r ) · 2m, we show that it must contain

Ωr(m
1/2) copies of Kr+1 sharing r common vertices. This confirms a conjecture of Li,

Liu and Feng and unifies a series of spectral extremal results on books and cliques.

• We prove that every m-edge graph G with λ(G) >
√
m contains at least (18 − o(1))m2

copies of 4-cycles, and we provide constructions showing that the constant 1
8 is the best

possible. This result settles a problem raised by Ning and Zhai, and it gives the first
asymptotics for counting degenerate bipartite graphs.

Key to our proof are two structural results we obtain for graphs with large spectral
radii on their maximum degree and on existence of large structured subgraphs, which
we believe to be of independent interest.

In memory of Prof. Vladimir Nikiforov.

1 Introduction

We study spectral problems for supersaturation phenomena in extremal graph theory. Spectral
extremal graph theory has enjoyed tremendous growth in the past few decades thanks to its
connections and applications to numerous other fields. Throughout the paper, for a graph G,
we write n and m for the number of vertices and edges in G, respectively.

Our starting point is a classical result of Nosal [49] (see, e.g., [39]), which states that if
G is triangle-free, then its spectral radius satisfies λ(G) ≤

√
m. Nosal’s theorem strengthens

the fundamental result of Mantel (see, e.g., [4]) that if G is triangle-free, then m ≤ ⌊n2/4⌋,
with equality if and only if G = Tn,2, where Tn,r is the n-vertex complete r-partite Turán
graph whose part sizes are as equal as possible. Indeed, using the Rayleigh formula, we have
2m/n ≤ λ(G) ≤

√
m, which gives m ≤ ⌊n2/4⌋ = e(Tn,2) and λ(G) ≤

√
⌊n2/4⌋ = λ(Tn,2). In

honor of this foundational result, in this paper we say that an m-edge graph G is Nosal if it
satisfies λ(G) >

√
m. There are various generalizations of Nosal’s theorem for other forbidden
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subgraph F in the literature; see [39, 6, 33, 55] for cliques, [2, 44] for complete bipartite graphs,
[10, 28, 27, 56] for cycles, [9, 20] for trees, [11, 54, 42, 31, 29] for others.

Supersaturation, appearing in many different problems in extremal combinatorics, refers to
the phenomenon that when going beyond the extremal threshold, not just a single copy but a
great number of forbidden structures would emerge. For instance, Rademacher (unpublished,
see Erdős [14, 16]) showed that every n-vertex graph with at least ⌊n2/4⌋+ 1 edges contains at
least ⌊n/2⌋ triangles. Such problems have attracted a great deal of attentions; see, e.g., [36, 37,
38, 50, 24, 35] for recent developments on supersaturation.

The study of spectral problems for supersaturation was initiated by Bollobás and Nikiforov
[6] in 2007. In particular, they proved that the number of triangles t(G) satisfies t(G) ≥
n2

12 (λ(G)− n
2 ) and t(G) ≥ 1

3λ(G)
(
λ2(G)−m

)
. The second inequality was independently proved

by Cioabă, Feng, Tait and Zhang [11]. Furthermore, Ning and Zhai [48] showed that the equality
holds if and only if G is a complete bipartite graph. Moreover, Ning and Zhai also proved that
if G is Nosal with m edges, then t(G) ≥ ⌊12(

√
m − 1)⌋; this bound is the best possible. The

spectral supersaturation problems were also studied under the condition λ(G) > λ(Tn,2) for
n-vertex graphs G; see, e.g., [48, 52, 29] for recent progresses.

In this paper, we investigate the supersaturation for Nosal graphs.

1.1 Books in Nosal graphs

A book of size k, denoted Bk, is a graph consisting of k triangles sharing a common edge. For
a graph G, denote by bk(G) the size of the largest book it contains. Erdős [15] proved that
every graph on n vertices with ⌊n2/4⌋ + 1 edges satisfies bk(G) = Θ(n) and conjectured that
bk(G) ≥ n/6, which was proven by Edwards (unpublished, see [17, Lemma 4]) and independ-
ently by Khadžiivanov and Nikiforov [25]. Two alternative proofs were provided by Bollobás
and Nikiforov [5] and Li, Feng and Peng [29]. Problems on books have attracted considerable
attention; see, e.g., [21, 12, 13, 52] and references therein.

Recently, Zhai, Lin and Shu [53] proved that if G is Nosal with m edges, then G contains a
copy of K2,r with r >

√
m/4. Note that Br is K2,r with an extra edge. Zhai, Lin and Shu [53]

conjectured that G also contains a large book. This was confirmed by Nikiforov [45], who
proved that every m-edge Nosal graph G satisfies bk(G) > 1

12
4
√
m. In the same paper, Nikiforov

remarked that “The bound on bk(G) seems far from optimal, as the multiplicative constant and
perhaps the exponent 1/4 can be improved.” Supporting Nikiforov’s speculation, Li and Peng
[32] conjectured that the exponent can be improved to 1/2.

Conjecture 1.1 (Nikiforov [45], Li and Peng [32]). For every m-edge Nosal graph G, we have
bk(G) = Ω(

√
m).

Our first result confirms this conjecture and shows that the order
√
m is the best possible.

Theorem 1.2. If G is an m-edge Nosal graph, then bk(G) > 1
144

√
m. Furthermore, there exist

m-edge Nosal graphs with no book larger than (13 + o(1))
√
m.

In 1941, Turán [4] extended Mantel’s theorem, showing that if G is a Kr+1-free graph on
n vertices, then e(G) ≤ (1 − 1/r)n2/2, with equality if and only if r divides n and G = Tn,r.
In 1986, Wilf [51] proved a spectral extension that if G is a Kr+1-free graph on n vertices,
then λ(G) ≤

(
1− 1

r

)
n, and equality holds if and only if r divides n and G = Tn,r. In 2002,

Nikiforov [39] showed a further extension that if G is a Kr+1-free graph with m edges, then
λ2(G) ≤ 2m

(
1− 1

r

)
, and the extremal graphs were later characterized in [40]; they are complete

bipartite graphs for r = 2, or regular complete r-partite graphs for r ≥ 3.
The generalized book Br,k = Kr∨Ik is a graph obtained by joining every vertex of a clique Kr

to every vertex of an independent set Ik of size k. Naturally, one wonders whether Conjecture
1.1 can be extended to generalized books. This problem was proposed in [30, Conjecture 1.20].

2



Conjecture 1.3 (Li–Liu–Feng [30], 2021). Let r ≥ 2, k ≥ 1 be fixed and m be sufficiently large.
If G is a Br,k-free graph with m edges, then λ2(G) ≤

(
1− 1

r

)
· 2m.

Conjecture 1.3 gives a unified extension on the spectral extremal results for triangles, books
and cliques. Our next result resolves Conjecture 1.3 in a strong sense, determining the correct
order of largest generalized books guaranteed in graphs with large spectral radii.

Theorem 1.4. Every m-edge graph G with λ2(G) >
(
1− 1

r

)
·2m contains a copy of Br,k of size

k = Ωr(
√
m). Furthermore, there are such graphs with largest generalized booksize Or(

√
m).

1.2 Structure of Nosal graphs and quadrilateral counts

We now turn our attention to supersaturations for bipartite graphs. Note that the star K1,m

satisfies λ(K1,m) =
√
m and does not contain any 4-cycle. A result of Nikiforov [41] states that

if G is a Nosal graph with m ≥ 10 edges, then G contains a 4-cycle. Recently, Ning and Zhai
[47] proved a corresponding supersaturation result, showing that if G is a Nosal graph with
m ≥ 3.6× 109 edges, then G has at least m2/2000 copies of C4. Let

f(m) = min{number of C4 in G : e(G) = m and λ(G) >
√
m}

be the number of C4 guaranteed in every m-edge Nosal graph. The result of Ning and Zhai [47]
can be written as f(m) > m2/2000. Ning and Zhai proposed the following problem.

Problem 1.5 (Ning–Zhai [47]). Determine the limit lim
m→∞

f(m)/m2.

We point out that it is possible to improve the constant 1/2000 by a similar argument as in
[47]. However, it appears difficult to determine the limit exactly using Ning–Zhai’s approach.
We resolve this problem using a different approach.

Theorem 1.6. Every m-edge Nosal graph has at least (18 − o(1))m2 copies of C4. Furthermore,

the constant 1/8 is optimal. In other words, limm→∞
f(m)
m2 = 1

8 .

The key ingredients and bulk of the proof of Theorem 1.6 are two structural results we
obtain for Nosal graphs, which we believe to be of independent interest and may have further
applications.

The first one bounds the maximum degree of a Nosal graph.

Theorem 1.7. If G is an m-edge Nosal graph, then for sufficiently large m,

∆(G) ≤ m

2
+m0.99.

One difficulty in proving Theorem 1.7 comes from the fact that K1,m has spectral radius
exactly equal to

√
m, so one needs to show that tweaking K1,m can only decrease the spectral

radius. Another difficulty lies in the fact that there are two very different looking graphs (see
Examples 4.1 and 4.2) which are both extremal graphs up to a lower order term. We remark
that the lower order term m0.99 is far from optimal, but it is sufficient for our purpose.

The second one is a structural dichotomy for Nosal graphs. It says that any Nosal graph has
a large subgraph that is either bipartite or has maximum degree o(m). For example, in Example
4.1 the clique has maximum degree o(m), and the graph in Example 4.2 can be made bipartite
by removing a single edge.

Theorem 1.8. For any ε > 0, there exists a constant N(ε) such that the following holds. If G
is an m-edge Nosal graph, then there exists a subgraph G′ of G with

λ(G′) > (1− ε)
√
m−N(ε)

such that one of the following holds:

(a) G′ is bipartite;

(b) G′ has maximum degree at most εm.
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1.3 Applications on phase transitions and our approach.

We would like to point out an interesting analogy between Nosal graphs and n-vertex graphs
with more than n2/4 edges. An avenue of new directions that fit into our framework is to find
results about certain graph parameters that exhibit a phase transition/jump when e(G) changes
from ⌊n2/4⌋ to ⌊n2/4⌋+ 1 and extend such results to Nosal graphs. Some known examples are:
(i) the number of triangles jumps from 0 to Ω(n), see [14, 16]; (ii) the booksize jumps from 0
to Ω(n), see [25, 5, 29]; (iii) the number of triangular edges jumps from 0 to Ω(n), see [17]; (iv)
the size of largest chordal subgraph jumps from 0 to Ω(n), see [18]; (v) the number of copies of
C+
4 jumps from 0 to Ω(n2), see [38]; (vi) the number of K4-saturating-edges jumps from 0 to

Ω(n2), see [3]. As corollaries of our results, we obtain spectral analogs of the jump phenomena
of these parameters for Nosal graphs. We defer detailed discussions to Section 5.

Lastly, we remark that results obtained under the edge-spectral condition λ(G) >
√
m of

being Nosal is a generalization of both the density condition e(G) > ⌊n2/4⌋ and the vertex-
spectral condition λ(G) >

√
⌊n2/4⌋. Indeed, as mentioned before, by the Rayleigh formula

graphs satisfying one of the latter two conditions must be Nosal. What is more important is
that the results under vertex-spectral condition apply only to dense graphs with quadratically
many edges, whereas the edge-spectral extensions can apply to graphs of all density (see, e.g.,
the sparse graphs in Examples 4.1 and 4.2). It would be interesting to obtain more edge-spectral
extensions of extremal results; see Theorem 3.2 for one such example for joints (cf. Corollary 3.3).

Our approach. For Theorem 1.2, we first prove a weighted version of Edwards- Khadžiivanov-
Nikiforov’s result (Lemma 2.6) on the appearance of large books in dense graphs. Our main
tool for this step is a novel random blowup argument. We then introduce a weighting on the
Nosal graph G where the vertices are weighted according to the Perron–Frobenius eigenvector
x. Assigning weights to edges turns out to be more delicate. If we assign the natural uniform
weights to edges of G, the spectral radius condition implies that this weighted G is dense and
hence we can find a large weighted book. However, we cannot pull back this weighted book
to an actual (unweighted) one in G due to lack of control on the ℓ∞-norm of x. The key step
of our proof is to carefully design a set of edge weights to circumvent this issue. To prove the
more general Theorem 1.4, we first extend the argument in Theorem 1.2 to find a large joint
(Theorem 3.2), which is a collection of cliques sharing a common edge. We then obtain a desired
large generalized book from a large joint using the Kruskal–Katona theorem.

For Theorem 1.6, using the fact that the fourth moment of the eigenvalues of G counts the
number of 4-walks in G, one can estimate the number of 4-cycles in G with a combination of
spectral and degree information (Lemma 4.3). Unfortunately, this estimate alone is not strong
enough to guarantee even a single copy of C4 for Nosal graphs (see eq. (2)). This is where the two
structural results (Theorems 1.7 and 1.8) kick in. We lower bound the number of C4 in the large
subgraph G′ from Theorem 1.8 instead. If G′ is bipartite, we gain a factor of 2 improvements
on both the fourth moment of the eigenvalues and the ℓ2-norm of the degree sequence, and the
desired C4 count follows. If G′ has maximum degree o(m), we can then bound the ℓ2-norm of
the degree sequence by o(m2), which is also sufficient to finish the proof.

Organization. We prove Theorem 1.2 in Section 2. Then in Section 3, we extend our technique
to prove Theorem 1.4. The proof of Theorems 1.6 to 1.8 are given in Section 4. In Section 5,
we provide some applications of our results on phase transitions in Nosal graphs. In Section 6,
we conclude with some related spectral problems.

Conventions. All graphs in this paper are simple and undirected. Throughout, G is a graph
with vertex set V and edge set E. Unless indicated otherwise, n denotes the number of vertices
of G, and m denotes the number of edges of G. The degree of a vertex i ∈ V is denoted by
di. The maximum degree of G is denoted by ∆(G). The set of neighbors of a vertex i ∈ V

4



is denoted by N(i). The adjacency matrix A(G) of a graph G is defined as a V × V matrix
with ai,j = aj,i = 1 if and only if {i, j} ∈ E(G), and ai,j = aj,i = 0 otherwise. Since A(G) is
real and symmetric, all eigenvalues of A(G) are real and can be sorted as λ1 ≥ λ2 ≥ · · · ≥ λn.
Let λ(G) be the largest eigenvalues of G, which is known as the spectral radius of G. By the
Perron–Frobenius theorem, we have λ(G) ≥ |λi| for any i ∈ [n], and there exists a nonnegative
unit eigenvector (called the Perron–Frobenius eigenvector) x = (xi)i∈V corresponding to λ(G).
In particular, for each i ∈ V we have λ(G)xi =

∑n
j=1 ai,jxj =

∑
j∈N(i) xj . In the sequel, we shall

write
∑

{i,j}∈E for the sum over each edge in E once.

2 Proof of Theorem 1.2

We first give three different constructions to show that the order of magnitude
√
m in Theorem

1.2 is the best possible. Without loss of generality, we assume that m is a perfect square.

Example 2.1. Let s =
√
m + 1 and t = m −

(
s
2

)
≈ m/2. We choose H as any triange-free

graph with t edges. Define Ks ◦ H as the graph obtained from the complete graph Ks and
H by identifying a vertex. We can see that λ(Ks ◦ H) > λ(Ks) =

√
m and the booksize

bk(Ks ◦H) =
√
m− 1.

Example 2.2. We define H = K+
s,t as the graph obtained from the complete bipartite graph

Ks,t by adding an edge to the part of size s. Then the number of edges in H is m = st+1. One
can compute that λ(H) >

√
m whenever s < 4(t+ 1). Setting s = 2

√
m+ 1 and t = m−1

2
√
m+1

, we

have λ(H) >
√
m and H has booksize bk(H) = t ≈ 1

2

√
m.

Example 2.3. Let C□
3 be the triangular prism consisting of two disjoint triangles and a perfect

matching joining them. We define G as the blow-up of C□
3 , where we replace each vertex in

the upper triangle of C□
3 with an independent set of size (k + 1) and each vertex in the lower

triangle with an independent set of size (k − 1). Each edge of C□
3 is replaced with a complete

bipartite graph. Then n = |G| = 6k, m = e(G) = 9k2 + 3 and bk(G) = k + 1 ≤ 1
3

√
m+ 1. The

graph is Nosal since m > n2/4.

Our starting point for finding a large book is the following theorem of Edwards–Khadžiivanov–
Nikiforov.

Lemma 2.4 (See [25]). If an n-vertex graph G has more than n2/4 edges, then bk(G) > n/6.

A key ingredient in our proof is a weighted version of Lemma 2.4. We deduce this result by
a random blowup argument. We need Hoeffding’s inequality as stated below.

Lemma 2.5. Let X be a sum of K independent Bernoulli random variables. Then we have

Pr
(
|X − E(X)| ≥ K3/4

)
≤ exp

(
−Ω(

√
K)
)
.

Our weighted version of Lemma 2.4 reads as follows.

Lemma 2.6. Let G be a graph with vertex weights wi ∈ [0,∞) and edge weights pij ∈ [0, 1].
Suppose that

∑
i∈V (G)wi = 1 and ∑

{i,j}∈E(G)

pijwiwj >
1

4
.

Let B(i, j) denote the set of common neighbors of vertices i and j in G. Then there exists an
edge {i, j} ∈ E(G) with pij > 0 such that∑

k∈B(i,j)

pikpjkwk ≥ 1

6
.
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We remark that taking pij ≡ 1 and wi ≡ 1
n recovers lemma 2.4.

Proof. Let N be a sufficiently large positive integer. We construct a random graph G̃ as follows.
The vertex set of G̃ is the disjoint union of independent sets Vi of size ⌊wiN⌋ for each i ∈ V (G).
The edge set of G̃ is defined as follows: for each edge {i, j} ∈ E(G), between each pair of
vertices in Vi ×Vj , we put an edge independently with probability pij . Note that G̃ has at most
N vertices. By Lemma 2.5, with probability 1 − e−Ω(N), the number of edges in G̃ is at least∑

{i,j}∈E(G) pij |Vi||Vj | − N3/2 > N2/4. Then by Lemma 2.4, with probability 1 − e−Ω(N), we

have bk(G̃) > N/6.
By construction, edges in G̃ can exist between Vi and Vj only if {i, j} ∈ E(G) and pij > 0.

For any {i, j} ∈ E(G) and any two vertices (u, v) ∈ Vi × Vj , another vertex w is a common
neighbor of u, v only if w ∈ Vk for some k ∈ B(i, j), in which case w is a common neighbor
of u, v with probability pikpjk. Furthermore, for distinct w, the events that w is a common
neighbor of u, v are independent. Thus, the expected number of common neighbors of u, v is

at most N ·
∑

k∈B(i,j) pikpjkwk. Then by Lemma 2.5 again, with probability 1 − e−Ω(
√
N), the

number of common neighbors of u, v is at most

N ·
∑

k∈B(i,j)

pikpjkwk +N3/4.

Taking the union bound over all pairs of vertices, we conclude that with probability 1−e−Ω(
√
N),

N · max
{i,j}∈E(G)

pij>0

∑
k∈B(i,j)

pikpjkwk +N3/4 ≥ bk(G̃) >
N

6
.

As this holds for any sufficiently large N , we have

max
{i,j}∈E(G)

pij>0

∑
k∈B(i,j)

pikpjkwk ≥ 1

6
,

as desired.

The above proof relies on the use of Lemma 2.4. It might be of interest to find an elementary
proof of Lemma 2.6 without going through Lemma 2.4.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Assume that G = (V,E) is Nosal, i.e. satisfies λ(G) >
√
m. Let x be

the unit Perron–Frobenius eigenvector of G. If G is not connected, we can identify one vertex
from each connected component to obtain a connected graph with larger spectral radius, the
same number of edges and the same booksize. So we may assume that G is connected. This
assumption ensures that xi > 0 for every i ∈ V .

We apply Lemma 2.6 with vertex weights wi := x2i , which satisfies the condition
∑

i∈V wi = 1.
The choice of the edge weights pij is more subtle. A straightforward idea is pij = 1 for all
{i, j} ∈ E(G). Then by convexity and that λ(G) = 2

∑
{i,j}∈E(G) xixj , we have

∑
{i,j}∈E

pijwiwj =
∑

{i,j}∈E

x2ix
2
j ≥

1

m

 ∑
{i,j}∈E

xixj

2

=
λ2(G)

4m
>

1

4
.

So we can apply Lemma 2.6 to conclude that there exists {i, j} ∈ E such that∑
k∈B(i,j)

x2k ≥ 1

6
.
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Unfortunately, this is not sufficient to lower bound bk(G), since we have no control over x2k for
k ∈ B(i, j). Instead, we engineer a different set of edge weights

pij :=
max

{
m−1/2xixj − (4m)−1, 0

}
x2ix

2
j

.

This weight satisfies pij ∈ [0, 1] since x2ix
2
j − m−1/2xixj + (4m)−1 = (xixj − 2−1m−1/2)2 ≥ 0.

Furthermore, we have∑
{i,j}∈E

wiwjpij ≥
∑

{i,j}∈E

(m−1/2xixj − (4m)−1) =
λ(G)

2m1/2
− 1

4
>

1

4
.

So Lemma 2.6 is applicable, and there exists {i, j} ∈ E(G) with pij > 0 such that∑
k∈B(i,j)

pikpjkwk ≥ 1

6
. (1)

Since pij > 0, we have xixj > 4−1m−1/2. Without loss of generality, we may assume that

xi >
1

2m1/4
.

Let B′(i, j) be the set of vertices k ∈ B(i, j) with pik > 0. Then (1) yields

1

6
≤

∑
k∈B(i,j)

pikpjkwk ≤
∑

k∈B′(i,j)

pikwk =
∑

k∈B′(i,j)

m−1/2xixk − (4m)−1

x2i
.

The subsequent maneuvers are somewhat lossy and do not give an exact bound. First,

1

6
≤

∑
k∈B′(i,j)

m−1/2xixk − (4m)−1

x2i
<

∑
k∈B′(i,j)

m−1/2xk
xi

.

Therefore, we have ∑
k∈B′(i,j)

xk >
1

6
xim

1/2 >
1

12
m1/4.

On the other hand, by the Cauchy–Schwarz inequality, we obtain∑
k∈B′(i,j)

xk ≤
√
|B′(i, j)|

∑
k∈B′(i,j)

x2k ≤
√
|B′(i, j)|.

Thus we conclude that |B′(i, j)| > 1
144

√
m, so B′(i, j) and i, j form a book of size at least 1

144

√
m,

as desired.

3 Proof of Theorem 1.4

An r-joint is a family of r-cliques sharing a common edge. Let jsr(G) be the maximum number
of r-cliques in an r-joint of G. For example, we have js3(G) = bk(G). A result of Erdős [19]
shows that an n-vertex graph G with more than e(Tn,r) edges contains not only a Kr+1, but
also a large (r + 1)-joint, i.e., Ωr(n

r−1) copies of Kr+1 sharing an edge.

Lemma 3.1 (See [19, 7]). If G is a graph on n vertices with e(G) > (1− 1/r)n2/2, then

jsr+1(G) = Ωr(n
r−1).
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More precisely, Erdős [19] proved that jsr+1(G) ≥ nr−1/(10r)6r. Bollobás and Nikiforov [7]
later strengthened the result to jsr+1(G) ≥ nr−1/rr+5, though it remains an open question to
tighten the constant term in Lemma 3.1. In this section, we shall prove the following spectral
Turán analogue of Lemma 3.1 for graphs with given size.

Theorem 3.2. If G is a graph with λ2(G) > (1− 1/r) · 2m, then

jsr+1(G) = Ωr(m
r−1
2 ).

In particular, Theorem 1.2 is the special case r = 2. We shall postpone the proof of Theorem
3.2. As a byproduct, we first show that Theorem 1.4 follows from Theorem 3.2 via an application
of the Kruskal–Katona theorem.

Proof of Theorem 1.4. Using Theorem 3.2, there exists an edge {u, v} ∈ E(G) such that there
are Ωr(m

(r−1)/2) copies of Kr+1 in G containing {u, v}. The Kruskal–Katona theorem implies
that every graph with m edges has Ot(m

t/2) copies of Kt for every t ≥ 3; see, e.g., [4, p. 304]
or [1]. In particular, there are Or(m

(r−2)/2) copies of Kr−2 in G[N(u) ∩ N(v)]. Observe that
such a copy of Kr−2 corresponds to a copy of Kr containing the edge {u, v}. Thus, there are
Or(m

(r−2)/2) copies of Kr in G containing {u, v}. Recall that there are Ωr(m
(r−1)/2) copies

of Kr+1 containing {u, v}. As each copy of Kr+1 contains r + 1 copies of Kr, we can apply a
double counting argument on pairs (P,Q), where P and Q are r- and (r+ 1)-cliques containing
{u, v} respectively with P ⊆ Q. Thus there exist Ωr(

√
m) copies of Kr+1 that share a common

r-clique. The optimality on the order
√
m follows from Example 2.1 but with s =

√
(1− 1

r )2m

and t about m/r instead.

As another byproduct of Theorem 3.2, we obtain the following corollary, recovering a result
of Nikiforov [43].

Corollary 3.3. If G is an n-vertex graph with λ(G) > (1− 1/r)n, then

jsr+1(G) = Ωr(n
r−1).

Proof. Invoking the fact λ(G) ≥ 2m/n, we have λ2(G) > (2m/n) · (1 − 1/r)n = (1 − 1/r)2m.

Then Theorem 3.2 implies that jsr+1(G) = Ωr(m
r−1
2 ). Since λ(G) = Ωr(n), we get m = Ωr(n

2).
Thus, it follows that jsr+1(G) = Ωr(n

r−1).

3.1 Proof of Theorem 3.2

Extending the proof of Theorem 1.2, we replace Hoeffding’s inequality with the Kim–Vu poly-
nomial concentration inequality [26], which is a celebrated result for proving the concentration
of subgraph counts. We state a directly applicable corollary of Kim–Vu’s inequality.

Lemma 3.4. Let V be a set of at most N vertices. Let u, v be any two distinct vertices in V ,
and let C be a family of (r+ 1)-element sets such that each C ∈ C contains u and v. Let G be a
random graph on V where each edge is included independently, possibly with different probability.
Let X be the random variable counting the number of C ∈ C such that G[C] is a clique. Let
E′(X) denote the expectation of X conditioned on {u, v} ∈ E. We have

Pr
(
X − E′(X) ≥ N r−5/4

)
≤ exp(−NΩr(1)).

Proof. Note that |C| ≤ N r−1. If {u, v} /∈ E, we have X = 0. So we condition on the event
{u, v} ∈ E. We denote k =

(
r+1
2

)
− 1 and consider the k-uniform hypergraph H, with vertex

8



set V (H) =
(
V
2

)
− {u, v} and edge set E(H) = {{e ∈ V (H) : e ⊂ C} : C ∈ C}. Conditioned on

{u, v} ∈ E(G), we have

X =
∑

e∈E(H)

∏
i∈e

ti

where ti is the indicator variable denoting whether edge i ∈
(
V
2

)
lies in G. By assumption, ti are

independent Bernoulli random variables. Furthermore, for any i ∈ V (H), the number of C ∈ C
containing i is at most N r−2, since any such C must contain vertices u, v and at least one other
element of i. In the language of [26], we have

E(X) ≤ N r−1, E′(X) ≤ N r−2.

Applying the main theorem of [26] with λ = N1/100k, we conclude the desired result.

The proof of Theorem 3.2 proceeds via the following weighted version of Lemma 3.1, whose
proof is analogous to Lemma 2.6. For completeness, we shall include a detailed proof.

Lemma 3.5. Let G = (V,E) be a graph with vertex weights wi ∈ [0,∞) and edge weights
pij ∈ [0, 1]. Suppose that

∑
i∈V wi = 1 and∑

{i,j}∈E

pijwiwj >
r − 1

2r
.

Then there exists an edge {i, j} ∈ E with pij > 0, such that if C(i, j) denotes the set of (r + 1)-
cliques in G containing {i, j}, then∑

C∈C(i,j)

∏
k∈C\{i,j}

wk

∏
{s,t}⊆C

{s,t}̸={i,j}

pst = Ωr(1).

Taking pij ≡ 1 and wi ≡ 1/n recovers Lemma 3.1.

Proof. Let N be a sufficiently large integer. We construct a random graph G̃ as follows. Each
vertex i ∈ V (G) is blown up into an independent set Vi of size ⌊wiN⌋, and the edge set of G̃ is
as follows: for each {i, j} ∈ E(G), we put an edge independently with probability pij between
each pair of vertices in Vi and Vj . Note that G̃ has at most N vertices. By Lemma 2.5, with
probability 1−e−Ω(N) the number of edges in G̃ is at least

∑
{i,j}∈E(G) pij |Vi||Vj |−N3/2 > r−1

2r N2.

By Lemma 3.1, with probability 1− e−Ω(N) we have jsr+1(G̃) = Ωr(N
r−1).

On the other hand, note that edges in G̃ can exist between Vi and Vj only if {i, j} ∈ E(G)
and p(i, j) > 0. Consider any {i, j} ∈ E(G) and (u, v) ∈ Vi×Vj . Conditioned on {u, v} ∈ E(G̃),
the expected number of (r + 1)-cliques in G̃ containing {u, v} is∑

C∈C(i,j)

∏
k∈C\{i,j}

|Vk| ·
∏

{s,t}⊆C
{s,t}≠{i,j}

pst ≤ N r−1 ·
∑

C∈C(i,j)

∏
k∈C\{i,j}

wk ·
∏

{s,t}⊆C
{s,t}̸={i,j}

pst.

We apply Lemma 3.4. With probability 1 − exp(−NΩr(1)), the number of (r + 1)-cliques in G̃
containing {u, v} is at most

N r−1 ·
∑

C∈C(i,j)

∏
k∈C\{i,j}

wk ·
∏

{s,t}⊆C
{s,t}≠{i,j}

pst +O(N r− 5
4 ).

Taking the union bound over all pairs of vertices, with probability 1− exp(−NΩr(1)) we have

N r−1 · max
{i,j}∈E(G)

pij>0

∑
C∈C(i,j)

∏
k∈C\{i,j}

wk ·
∏

{s,t}⊆C
{s,t}≠{i,j}

pst +O(N r−5/4) ≥ jsr+1(G̃) > Ωr(N
r−1).

Since this holds for any sufficiently large N , we obtain the desired bound.

9



Now, we present the proof of Theorem 3.2.

Proof of Theorem 3.2. Analogous to the proof of Theorem 1.2 we may assume that G is con-
nected, so xi > 0 for every i ∈ V .

We define the vertex weights wi := x2i and the edge weights

pij :=
max

{√
2(r − 1)/(rm)xixj − (r − 1)/(2rm), 0

}
x2ix

2
j

.

By the assumption λ(G) >
√

2m(r − 1)/r, it is easy to check that

∑
{i,j}∈E

pijwiwj ≥
√

2(r − 1)

rm

∑
{i,j}∈E

xixj −
r − 1

2r
>

r − 1

2r
.

By Lemma 3.5, there exist two vertices i, j with {i, j} ∈ E(G) and pij > 0 such that∑
C∈C(i,j)

∏
k∈C\{i,j}

wk

∏
{s,t}⊆C

{s,t}̸={i,j}

pst = Ωr(1).

As pij > 0, we have xixj = Ωr(m
−1/2). Thus, we may assume that

xi = Ωr(m
−1/4).

For each C ∈ C(i, j), we have∏
k∈C\{i,j}

wk

∏
{s,t}⊆C

{s,t}≠{i,j}

pst ≤
∏

k∈C\{i,j}

wkpik = Or(1)
∏

k∈C\{i,j}

xk√
mxi

.

Then we have ∑
C∈C(i,j)

∏
k∈C\{i,j}

xk ≥ Ωr(1) · (
√
mxi)

r−1 = Ωr(m
r−1
4 ).

By the Cauchy–Schwarz inequality, we have ∑
C∈C(i,j)

∏
k∈C\{i,j}

xk

2

≤ |C(i, j)|

 ∑
C∈C(i,j)

∏
k∈C\{i,j}

x2k

 ≤ |C(i, j)|

(∑
k

x2k

)r−1

= |C(i, j)|,

where we used
∑

k x
2
k = 1. So we conclude that |C(i, j)| ≥ Ωr(m

r−1
2 ), as desired.

4 Proof of Theorem 1.6

Throughout this section, let #C4 denote the number of copies of C4 in the Nosal graph G. For
vertex sets A, let G[A] denote the induced subgraph, and let E[A] be the edge set of G[A].
Similarly, for disjoint vertex sets A and B, let G[A,B] denote the induced bipartite subgraph,
and let E[A,B] be the edge set of G[A,B].

To prove Theorem 1.6, we first present two constructions that show the upper bound

f(m) ≤
(
1

8
+ o(1)

)
m2.
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Example 4.1. Let s = ⌈
√
m⌉ + 1 and t = m −

(
s
2

)
. Let G = Ks ◦K1,t be the graph obtained

from the complete graph Ks by adding t pendant edges to one of the vertice. We have λ(G) >
λ(Ks) = s − 1 ≥

√
m. Observe that G contains

(
s
4

)
copies of K4 and each K4 contains three

copies of C4. Thus the number of copies of C4 in G is 3
(
s
4

)
= 1

8m
2 + O(m3/2), where the error

term oscillates between ±1
4m

3/2. In fact, we can start with the complete graph Ks and distribute
the remaining t ≈ m

2 edges arbitrarily as long as they do not produce a new copy of C4.

Example 4.2. Assume m is odd. Let K2 ∨ m−1
2 K1 be the graph obtained from an edge K2

and an independent set m−1
2 K1 by joining each vertex of K2 to each vertex of m−1

2 K1. Upon

computation, we know that λ(K2 ∨ m−1
2 K1) = 1+

√
4m−3
2 >

√
m. For this graph, we have

#C4 =
(m−1

2
2

)
= 1

8(m− 1)(m− 3).
In fact, for every m there is a similar construction with fewer copies of C4. Let G be the

graph obtained from K2 ∨ m−t−1
2 K1 by adding t pendent edges to one vertex of K2. Then

λ(G) > λ(K2 ∨ m−t−1
2 K1) =

1
2

(
1 +

√
4(m− t)− 3

)
>

√
m for every m > (t+ 1)2. Taking t to

be the largest integer less than ⌊
√
m− 1⌋ such that m− t− 1 is even, we have #C4 =

(m−t−1
2
2

)
=

1
8m

2 − 1
4m

3/2 +O(m). We conclude the upper bound f(m) ≤ 1
8m

2 − 1
4m

3/2 +O(m).

We now prove the lower bound part of Theorem 1.6 assuming Theorems 1.7 and 1.8. As
outlined before, we shall use the fourth moment of the eigenvalues of G to count C4, as shown
in the following lemma.

Lemma 4.3 (See [34]). Let G be a graph on n vertices. Writing M(G) :=
∑

i∈V d2i , we have

#C4 =
1

8

∑
i∈V

(λ4
i + λ2

i )−
1

4
M(G).

Here we include a proof for the convenience of readers.

Proof. Note that the matrix entry (A4)i,j is equal to the number of walks of length 4 from vertex
i to j. Thus, we obtain Tr(A4) = 8#C4 + 2#K2 + 4#K1,2, where #H denotes the number of
copies of H in G. Moreover, we have

∑
i∈V d2i = 2#K2 + 2#K1,2. Therefore, we have

#C4 =
1

8

(
Tr(A4) + 2m− 2

∑
i∈V

d2i

)
=

1

8

∑
i∈V

(λ4
i + λ2

i − 2d2i ).

The desired result follows immediately.

However, if we employ Lemma 4.3 with the trivial estimates, we obtain

#C4 >
1

8
(λ4(G) + λ2(G))− 1

4
M(G) >

1

8
(m2 +m)− 1

4
(m2 +m), (2)

which is not even positive. We shall use Theorems 1.7 and 1.8 to improve this estimate.
We first translate Theorem 1.7 into an estimate on M(G).

Lemma 4.4. Let M(G) =
∑

i∈V d2i . Then M(G) ≤ ∆(G) ·m+ o(m2).

Proof. Let B be the set of vertices in G with degree at least m0.7. Then |B| ≤ 2m0.3 and∑
i∈B

di ≤ e(G) + e(G[B]) ≤ m+

(
|B|
2

)
≤ m+ 2m0.6.

Note that ∆(G) ≤ m. Thus we have∑
i∈B

d2i ≤ ∆(G) · (m+ 2m0.6) ≤ ∆(G) ·m+ 2m1.6.
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On the other hand, by the definition of B, we have∑
i/∈B

d2i ≤ m0.7
∑
i/∈B

di = 2m1.7.

Consequently, we obtain M(G) ≤ ∆(G) ·m+ 4m1.7.

Combining with Theorem 1.7, we get the promised estimate on M(G).

Corollary 4.5. If G is Nosal with m edges, then we have

M(G) =
∑
i∈V

d2i ≤
(
1

2
+ o(1)

)
m2.

We are now ready to establish Theorem 1.6.

Proof of Theorem 1.6. For any ε > 0, let G′ be the subgraph of G given by Theorem 1.8, and
let #C ′

4 denote the number of copies of C4 in G′.
If G′ is bipartite, then its eigenvalues are symmetric with respect to the origin. Therefore,

the smallest eigenvalue of G′ is at most −(1− ε− o(1))
√
m. By Corollary 4.5, we get

M(G′) ≤ M(G) ≤
(
1

2
+ o(1)

)
m2.

Applying Lemma 4.3 to G′, we conclude that

#C ′
4 ≥

1

8
· (2(1− ε)4 − o(1))m2 − 1

4
M(G′) ≥ 1

8
· (2(1− ε)4 − 1− o(1))m2 =

(
1

8
−O(ε)

)
m2.

If G′ has maximum degree at most εm, then by Lemma 4.4, we have

M(G′) ≤ εm2 + o(m2).

So we conclude that

#C ′
4 ≥

1

8
· ((1− ε)4 − o(1))m2 − 1

4
M(G′) =

(
1

8
−O(ε)

)
m2.

In either case, the number of 4-cycles in G is at least (1/8−O(ε))m2. As ε > 0 is arbitrary, we
conclude that #C4 ≥ (1/8− o(1))m2.

4.1 The maximum degree of Nosal graphs

Proof of Theorem 1.7. Let i∗ be the vertex that maximizes xi∗ . We repeat the following opera-
tion: if there is an edge jk such that j is not adjacent to i∗, then remove this edge from G and
add the edge i∗j. Note that this operation does not decrease xTAGx, so it preserves the Nosal
property. When we can no longer do this operation, remove all isolated vertices, and let G∗ be
the resulting graph. Then G∗ is Nosal, and i∗ is universal in G∗, that is, i∗ is adjacent to all the
other vertices. Observe also that ∆(G∗) ≥ ∆(G).

Thus, we may assume that our Nosal graph G has a universal vertex v. Set k = dv. For the
sake of contradiction, we assume that k > m/2 +m0.99.

Since λ(G) >
√
m, we have

2
∑

{i,j}∈E

xixj >
√
m
∑
i∈V

x2i .
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Let G′ = (V ′, E′) be the subgraph of G induced by V (G)\{v}. Then |V ′| = k > m/2 +m0.99

and |E′| = m−k. We write d′i and N ′(i) for the degree and the neighborhood of a vertex i ∈ V ′,
respectively. Isolating the terms with i = v in the above inequality, we have

2
∑

{i,j}∈E′

xixj + 2
∑
i∈V ′

xixv >
√
m
∑
i∈V ′

x2i +
√
mx2v.

Using the AM-GM inequality, we have

√
mx2v +

1√
m

(∑
i∈V ′

xi

)2

≥ 2
∑
i∈V ′

xixv.

Summing these two inequalities, we get

2
∑

{i,j}∈E′

xixj +
1√
m

(∑
i∈V ′

xi

)2

>
√
m
∑
i∈V ′

x2i . (3)

We now employ a classical estimate on
∑

{i,j}∈E′ xixj . Note that

2
∑

{i,j}∈E′

xixj ≤
∑

{i,j}∈E′


√

d′j + 1√
d′i + 1

x2i +

√
d′i + 1√
d′j + 1

x2j

 .

For every i, we set

qi :=
∑

j∈N ′(i)

√
d′j + 1√
d′i + 1

.

Then (3) gives

1√
m

(∑
i∈V ′

xi

)2

>
∑
i∈V ′

(
√
m− qi) · x2i . (4)

We can bound qi as follows.

Claim 4.6. qi < min

{√
2(m− k),

√
d′i

d′i+1

(
(m− k) + d′2i

)}
.

Proof of claim. Using the Cauchy–Schwarz inequality, we obtain

qi ≤

√
d′i

d′i + 1
·
√ ∑

j∈N ′(i)

(d′j + 1).

Let S denote the vertex set consisting of i and its neighbors in V ′. Then
∑

j∈N ′(i)(d
′
j + 1) =∑

j∈S d′j is equal to twice the number of edges in G′[S] plus the number of edges in G′ with
exactly one vertex in S. In particular, this implies∑

j∈N ′(i)

(d′j + 1) ≤ min

{
2e(G′), e(G′) +

(
|S|
2

)}
.

The claim follows as e(G′) = m− k and |S| = d′i + 1. ■
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Recall that we assume k > m/2 +m0.99. By Claim 4.6, for each i ∈ V ′ we have

√
m− qi > 0.

Applying the Cauchy–Schwarz inequality on the right hand side of (4) gives

1√
m

(∑
i∈V ′

xi

)2

>
∑
i∈V ′

(
√
m− qi) · x2i ≥

(∑
i∈V ′

xi

)2

· 1∑
i∈V ′

1√
m−qi

.

So we must have ∑
i∈V ′

1√
m− qi

>
√
m. (5)

Let S1 be the set of vertices in V ′ with degree at least m0.25, and let S2 = V ′\S1. For any vertex
i ∈ S1, Claim 4.6 implies that

1√
m− qi

<
1

√
m−

√
2(m− k)

<
1

√
m−

√
m− 2m0.99

< m−0.49. (6)

For each vertex i ∈ S2, by definition we have d′i < m0.25. Next, we prove a more sophisticated
estimate on 1/(

√
m − qi) for every i ∈ S2. Let d′i,1 denote the number of edges between i and

vertices in S1, and d′i,2 denote the number of edges between i and vertices in S2.

Claim 4.7. For any vertex i ∈ S2, we have

1√
m− qi

≤ m−0.5 + (m−0.5 −m−0.6)d′i,1 +m−0.6d′i,2. (7)

Proof of claim. Using Cauchy-Schwarz’s inequality as in Claim 4.6, we have

∑
j∈S1∩N ′(i)

√
d′j + 1√
d′i + 1

≤

√
d′i,1

d′i + 1

(
(m− k) + d′2i

)
≤

√
d′i,1

d′i,1 + 1

(m
2

−m0.98
)
,

where the last inequality follows from k > m/2 +m0.99 and d′2i < m0.5. Furthermore, we have

∑
j∈S2∩N ′(i)

√
d′j + 1√
d′i + 1

≤
√
m0.25 + 1 ·

d′i,2√
d′i + 1

≤ m0.2d′i,2.

So for every i ∈ S2, it follows that

qi ≤

√
d′i,1

d′i,1 + 1

(m
2

−m0.98
)
+m0.2d′i,2.

Then we have
1√

m− qi
≤ 1

√
m−

√
d′i,1

d′i,1+1

(
m
2 −m0.98

)
−m0.2d′i,2

.

Note that the difference between the first two terms in the denominator above is greater than
(1−

√
1/2)

√
m, which together with d′i,2 < d′i < m0.25 yields

1√
m− qi

≤ 1

√
m−

√
d′i,1

d′i,1+1

(
m
2 −m0.98

) + 100m−0.8d′i,2.
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One can now directly verify

1

√
m−

√
d′i,1

d′i,1+1

(
m
2 −m0.98

) ≤ m−0.5 + (m−0.5 −m−0.6)d′i,1.

Indeed, if d′i,1 ∈ {0, 1}, then this follows by direct computation. If d′i,1 ≥ 2 we have

1

√
m−

√
d′i,1

d′i,1+1

(
m
2 −m0.98

) <
1√
m

· 1

1−
√

d′i,1
2(d′i,1+1)

< 0.9m−0.5(1 + d′i,1),

where the last inequality follows since for any real number x > 1.43,

0.9

(
1−

√
x

2(x+ 1)

)
(1 + x) > 1.

So we have verified the inequality (7). ■

Combining (6) with (7), we have∑
i∈V ′

1√
m− qi

≤ m−0.49|S1|+
∑
i∈S2

(
m−0.5 + (m−0.5 −m−0.6)d′i,1 +m−0.6d′i,2

)
= m−0.5|S2|+m−0.49|S1|+

∑
i∈S2

(
(m−0.5 −m−0.6)d′i,1 +m−0.6d′i,2

)
We now bound the right hand side using the discharging method. For each edge e ∈ E′ and
endpoint i ∈ e, we define a weight we,i that e “discharges” to i as follows

1. If e lies in G′[S1] or G
′[S2], we set we,i = m−0.6.

2. Otherwise, let the endpoints of e be i, j with i ∈ S1 and j ∈ S2. We set we,i = m−0.7 and
we,j = m−0.5 −m−0.6.

Recall that S1 denotes the set of vertices with degree at least m0.25. On the one hand, each
vertex i in S1 satisfies ∑

e:i∈e
we,i ≥ m−0.7 ·m0.25 > m−0.49

while each vertex i in S2 satisfies∑
e:i∈e

we,i ≥ (m−0.5 −m−0.6)d′i,1 +m−0.6d′i,2.

On the other hand, each edge e in E′ satisfies∑
i:i∈e

we,i ≤ max{2m−0.6,m−0.7 +m−0.5 −m−0.6} < m−0.5 −m−0.7.

So we conclude that

m−0.49|S1|+
∑
i∈S2

(m−0.5 −m−0.6)d′i,1 +m−0.6d′i,2 ≤
∑

i∈V ′,e∈E′:i∈e
we,i ≤ (m−0.5 −m−0.7)|E′|.

Invoking |E′| = m− k and |S2| ≤ |V ′| = k, we have∑
i∈V ′

1√
m− qi

≤ m−0.5k + (m−0.5 −m−0.7)(m− k) ≤
√
m,

which contradicts with (5). Therefore, we must have k ≤ m/2 +m0.99.
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In the above proof, under the assumption k > m/2+m0.99, we have shown that (3) does not
hold. In other words, we have shown the following result, which may be of independent interest.

Proposition 4.8. Let m and k be integers such that k > m/2 + m0.99. If G′ = (V ′, E′) is a
graph with |V ′| = k and |E′| = m− k, then

2
∑

{i,j}∈E′

xixj ≤
√
m
∑
i∈V ′

x2i −
1√
m

(∑
i∈V ′

xi

)2

.

4.2 Structural dichotomy for Nosal graphs

Proof of Theorem 1.8. Let λ = λ(G). Without loss of generality, assume ε < 0.1.
The crucial idea is to study the following sequence of sets. Recall that x is the Perron-

Frobenius eigenvector of G, which satisfies
∑

i∈V x2i = 1. By assumption, we have∑
{i,j}∈E

2xixj = λ >
√
m.

For each positive integer t, we define the following sets

At := {i ∈ V : xi ≥ ε2t},

Bt := {i ∈ V : xi ≤ ε−2tm−1/2},

Ct := {i ∈ V : ε−2tm−1/2 < xi < ε2t}.

Observe that At ⊔ Bt ⊔ Ct = V and Ct ⊂ Ct−1. Note that the bipartite graphs G[Ct, Ct−1\Ct]
are edge disjoint. By the pigeonhole principal, there exists some t < ε−2 + 2 such that∑

{i,j}∈E[Ct,Ct−1\Ct]

2xixj ≤ ε2λ.

Since
∑

i x
2
i = 1, we have |At−1| ≤ ε−4(t−1) and |Ct| ≤ ε4tm. Thus we have∑

{i,j}∈E[Ct,At−1]

2xixj ≤ λ(G[Ct, At−1]) ≤
√
|Ct| · |At−1| ≤ ε2

√
m ≤ ε2λ.

For each {i, j} ∈ E[Ct, Bt−1], we have

xixj ≤ ε−2(t−1)m−1/2 · ε2t ≤ ε2m−1/2.

So we get ∑
{i,j}∈E[Ct,Bt−1]

2xixj ≤ ε2m−1/2 · 2m ≤ 2ε2λ.

Recall that V = At−1⊔Bt−1⊔Ct−1 and Ct ⊆ Ct−1. Thus we have Ct = At−1∪Bt−1∪ (Ct−1\Ct).
Combining the inequalities above, we conclude that∑

{i,j}∈E[Ct,Ct]

2xixj ≤ 4ε2λ ≤ ελ.

Thus we have ∑
{i,j}∈E[Ct]

2xixj +
∑

{i,j}∈E[Ct]

2xixj ≥ (1− ε)λ. (8)
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Note that Ct = At ∪Bt. Since |At| ≤ ε−4t, we obtain∑
{i,j}∈E[At]

2xixj ≤ |At|2 ≤ ε−8t.

By the definition of Bt, we have∑
{i,j}∈E[Bt]

2xixj ≤ 2m ·
(
ε−2tm−1/2

)2
≤ 2ε−4t.

In conclusion, subtracting from (8) the contribution of E[At] and E[Bt], we have∑
{i,j}∈E[Ct]

2xixj +
∑

{i,j}∈E[At,Bt]

2xixj ≥ (1− ε)λ− 3ε−8t.

In particular, setting N(ε) = 3 ·ε−8(ε−2+2), the disjoint union of G[Ct] and G[At, Bt] has spectral
radius at least (1 − ε)λ − N(ε). So one of the two subgraphs has spectral radius at least
(1− ε)λ−N(ε).

If G[At, Bt] has spectral radius at least (1 − ε)λ − N(ε), then it satisfies (a), as desired.
Otherwise, G[Ct] has spectral radius at least (1 − ε)λ − N(ε), note that for any i ∈ Ct with
maximum degree ∆ in G[Ct], we have

ε−2tm−1/2∆ ≤
∑

j∈N(i)

xj = λxi ≤ λ · ε2t.

Recalling the standard estimate λ ≤
√
2m, we see that G[Ct] has max degree at most ∆ ≤

ε4tm1/2λ ≤ εm, thus it satisfies (b), as desired.

5 Applications

In this section, we present some corollaries of our main results. We focus on spectral analogs of
phase transitions of several graph parameters for Nosal graphs. Some of such results were known
prior to our work. For example, recent results of Ning and Zhai [48, 47] show that every Nosal
graph contains Ω(

√
m) triangles and Ω(m2) copies of C4. In 2021, Zhai, Lin and Shu [53] proved

that every Nosal graph contains a large complete bipartite subgraph K2,r with r = Ω(
√
m).

Theorem 1.2 recovers these results up to a constant.

5.1 Triangular edges

A triangular edge is an edge contained in a triangle. Extending Mantel’s theorem, Erdős,
Faudree and Rousseau [17] proved that every n-vertex graph with more than ⌊n2/4⌋ edges
contains at least 2⌊n/2⌋ + 1 triangular edges. Recently, Li, Feng and Peng [29] investigated
the spectral problems on triangular edges and showed a spectral version of Erdős–Faudree–
Rousseau’s theorem. Moreover, they proposed the following conjecture.

Conjecture 5.1 (See [29]). Every m-edge Nosal graph has at least
√
m triangular edges.

We remark that if Conjecture 5.1 is true, then the bound
√
m is the best possible. Similar

with the graphs in Example 2.2, we consider G = K+
s,t, where we take s = 2(

√
m + 1) and

t = 1
2(
√
m− 1). We can easily see that G has exactly 2t+ 1 =

√
m triangular edges.

Theorem 1.2 immediately implies a weak version of Conjecture 5.1.

Corollary 5.2. Every m-edge Nosal graph contains more than 1
72

√
m triangular edges.
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5.2 Maximum size of chordal subgraphs

A chordal graph is a graph with no induced cycles of length at least 4. It is well-known that a
graph is chordal if and only if it can be constructed from a single-vertex graph by iteratively
adding a vertex and connecting it to a clique of the current graph. This is called a perfect
elimination ordering. In 1989, Erdős, Gyárfás, Ordman and Zalcstein [18] proved that if n is
even and G is a graph on n vertices with n2/4 + 1 edges, then G contains a chordal subgraph
with at least 3n/2− 1 edges. This bound is achieved by the graph K+

n/2,n/2. We refer to [22] for
recent progress. Observe that a book in a graph is a chordal subgraph. From Theorem 1.2, we
can obtain the following result.

Corollary 5.3. Every m-edge Nosal graph has a chordal subgraph with at least 1
72

√
m edges.

The bound is tight up to a constant factor by the graphs in Examples 2.2 and 2.3.

5.3 K4-saturating edges

An edge in the complement G is called a K4-saturating edge if the addition of this edge to G
creates a copy of K4. Disproving a conjecture of Erdős and Tuza, Balogh and Liu [3] proved that
every n-vertex K4-free graph with ⌊n2/4⌋+1 edges must have at least 2

33n
2− 3

11n K4-saturating
edges. Moreover, they constructed a graph with at most 2

33n
2 − 7

33n K4-saturating edges.
Now consider an m-edge K4-free Nosal graph G. Note that any pair of nonadjacent vertices

in the large book guaranteed by Theorem 1.2 form a K4-saturating edge. Thus the same phase
transition on the number of K4-saturating edges occurs (jumping from 0 to Ω(m)) for K4-free
graphs when their spectral radii go beyond

√
m.

Corollary 5.4. Every m-edge K4-free Nosal graph has Ω(m) K4-saturating edges.

Note that the linear-in-m bound above is optimal: the K4-free Nosal graphs in Examples
2.2 and 2.3 contain O(m) K4-saturating edges.

5.4 Degree power in a graph

As the last application, we give a bound on degree powers in graphs with forbidden generalized
books. Nikiforov and Rousseau [46, eq. (4)] proved that if G is a Kr+1-free graph on n vertices
with m edges, then

n∑
i=1

d2i ≤ 2

(
1− 1

r

)
mn. (9)

Moreover, the equality holds if and only if G is a complete bipartite graph for r = 2, or G is
a regular complete r-partite graph for r ≥ 3, that is, r divides n and G = Tn,r. By Cauchy–
Schwarz’s inequality, we see that (9) implies Turán theorem. See also [8] for work on degree
powers.

The original proof of (9) is combinatorial. Now we provide two algebraic proofs.

Algebraic proof of (9). The Hofmeistar inequality (or Rayleigh’s formula) gives that λ2(G) ≥
1
n

∑n
i=1 d

2
i , with equality if and only if G is either regular or bipartite semi-regular. Recall that

if G is a Kr+1-free graph, then λ2(G) ≤
(
1− 1

r

)
2m, and the equality holds if and only if G is a

complete bipartite graph for r = 2, or a regular complete r-partite graph for r ≥ 3. Combining
these two inequalities, we can obtain (9) immediately.

We give another algebraic proof of (9). We use q(G) to denote the spectral radius of the
signless Laplacian matrix of G. It was proved in [23] that if G is a Kr+1-free graph, then

1

m

n∑
i=1

d2i ≤ q(G) ≤ q(Tn,r) ≤
(
1− 1

r

)
2n.
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This completes the second algebraic proof. Using a similar argument as the first algebraic proof,
we can extend (9) to Br,k-free graphs using Theorem 1.4.

Corollary 5.5. For every fixed r ≥ 2 and k ≥ 1, there exists an integer m0 such that if m ≥ m0

and G is a Br,k-free graph on n vertices with m edges, then

n∑
i=1

d2i ≤ 2

(
1− 1

r

)
mn.

Since Br,k is color-critical, a result of Simonovits implies e(G) ≤ e(Tn,r) ≤ (1− 1/r)n2/2.
Thus, Corollary 5.5 yields that for fixed integers r ≥ 2 and k ≥ 1, if G is a Br,k-free graph with
large order and size, then

∑n
i=1 d

2
i ≤ (1− 1/r)2 n3. This result also extends Turán’s theorem.

6 Concluding remarks

Books. We have shown in Theorem 1.2 that bk(G) > 1
144

√
m for every m-edge Nosal graph

G. On the other hand, Example 2.3 shows that there exists a Nosal graph G with bk(G) ≤
(13 + o(1))

√
m. It would be interesting to know what the right constant is.

Problem 6.1. Does every m-edge Nosal graph contain a book of size 1
3

√
m?

Recall that Edward’s theorem states that bk(G) > n/6 if m > n2/4. Here, we remark that
Problem 6.1, if true, implies Edward’s theorem, since the spectral condition λ(G) >

√
m is

weaker than the edge-condition m > n2/4. Indeed, if G is an n-vertex graph with m > n2/4
edges, then λ(G) ≥ 2m/n > n/2 and so λ2(G) ≥ (2m/n)2 > m.

4-cycles and bipartite graphs. Theorem 1.6 determines the asymptotic counts of 4-cycles in
Nosal graphs. A natural direction to explore is to extend the supersaturation result of C4 to the
complete bipartite graph Kt,t, the even cycle C2k and in general other bipartite graphs.

Color-critical graphs. Another interesting direction to explore is to understand the spectral
supersaturation for color-critical graphs with chromatic number r + 1 in an m-edge graph with

spectral radius larger than
√
(1− 1

r )2m.

Here is one example. Let C+
4 be the kite graph obtained from C4 by adding a chord. Note

that kite is color-critical and C+
4 = B2 = K−

4 . Mubayi [38] proved that every n-vertex graph

with more than ⌊n2/4⌋ edges contains at least
(⌊n/2⌋

2

)
copies of C+

4 . For an m-edge Nosal graph
G, by Theorem 1.2, we know that G contains a subgraph Bk with k = Ω(

√
m). As we get a kite

by taking any two triangles in this book, we obtain the following result.

Corollary 6.2. Every m-edge Nosal graph contains Ω(m) copies of C+
4 .

The bound in Corollary 6.2 is tight up to a constant factor, since the graph H in Example
2.2 has

(
t
2

)
≈ 1

8m copies of C+
4 . Observe that C+

4 contains both K3 and C4 as subgraphs. Also
note the difference between the supersaturation of C+

4 in Nosal graphs and that of K3 and C4:
every Nosal graph contains Θ(

√
m) copies of K3, Θ(m2) copies of C4, and Θ(m) copies of C+

4 .

We summarize the discussions above in the following table.
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e(G) > ⌊n2/4⌋ λ(G) >
√
m

#K3 ⌊n2 ⌋ [14, 16] ⌊12(
√
m− 1)⌋ [47]

#C4 Ω(n4) (18 − o(1))m2

Booksize bk(G) ⌈n6 ⌉ [25] Ω(
√
m)

Largest K2,t Ω(n) Ω(
√
m)

#Triangular edges 2⌊n2 ⌋+ 1 [17] Ω(
√
m)

Maximal chordal subgraph 3
2n− 1 [18] Ω(

√
m)

#K4-saturating edges(K4-free G) 2
33n

2 −Θ(n) [3] Ω(m)

#C+
4

(⌊n/2⌋
2

)
[38] Ω(m)

Table 1: Some spectral supersaturation results.

We can observe from Table 1 that there exists a correspondence between n and
√
m in the

vertex- and edge-spectral conditions. There have been significant effort devoted to determining
the optimal constant factors on the left column. It would be interesting to determine the
asymptotic spectral counts for the right column of Table 1 as well.

We plan to return to these topics in the near future.
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[17] P. Erdős, R. Faudree, and C. Rousseau. Extremal problems involving vertices and edges on
odd cycles. Discrete Math., 101(1):23–31, 1992.
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