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Abstract

For a k-uniform hypergraph (or simply k-graph) F , the codegree Turán density πco(F )
is the supremum over all α such that there exist arbitrarily large n-vertex F -free k-graphs
H in which every (k− 1)-subset of V (H) is contained in at least αn edges. In this paper, we
study the problem of what 3-graphs F satisfy πco(F ) = 0. We find that this is closely related
to the uniform Turán density π (F ), which is the supremum over all d such that there are
infinitely many F -free k-graphs H satisfying that any induced linear-size subhypergraph of
H has edge density at least d.

We prove that, for every 3-graph F , πco(F ) = 0 implies π (F ) = 0. We also introduce a
layered structure for 3-graphs which allows us to obtain the reverse implication: every layered
3-graph F with π (F ) = 0 satisfies πco(F ) = 0. Along the way, we answer in the negative a
question of Falgas-Ravry, Pikhurko, Vaughan and Volec [J. London Math. Soc., 2023] about
whether π (F ) ≤ πco(F ) always holds. In particular, we construct counterexamples F with
positive but arbitrarily small πco(F ) while having π (F ) ≥ 4/27.

Our proof relies on a random geometric construction, graph distributions, Ramsey’s theo-
rem and a new formulation of the characterization of 3-graphs with vanishing uniform Turán
density due to Reiher, Rödl and Schacht [J. London Math. Soc., 2018].

1 Introduction

Given a k-uniform hypergraph F (or simply k-graph), the Turán number of F , denoted by
ex(n, F ), is the maximum number of edges in an n-vertex k-graph H containing no copy of
F . Within the field of extremal combinatorics, Turán-type problems represent one of the most
important topics of study, dating back to the theorems of Mantel and Turán in the early 20th
century. In the decades since, Turán-type problems have found applications and numerous
connections in other fields, ranging from error-correcting codes in information theory to additive
number theory to sphere packing, just to name a few. Targeting on the limit behavior, one may
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define the Turán density

π(F ) := lim
n→∞

ex(n, F )(
n
k

) .

A standard averaging argument shows that this limit always exists. While Turán densities are
well-understood for graphs (i.e., 2-graphs), determining the Turán density of a k-graph becomes
notoriously difficult when k ≥ 3. Despite much effort and countless attempts, even the Turán

densities of the 3-graphs on four vertices with three and four edges, denoted by K
(3)−
4 and K

(3)
4

respectively, are still unknown. Determining the value of π(K
(3)
4 ) is one of the major open

problems in extremal combinatorics, with Erdős [8] offering a $500 reward for a solution.
The Turán density π(F ) can also be viewed asymptotically as the largest (normalized) min-

imum degree of an F -free k-graph, i.e. the supremum over all d such that there are arbitrarily
large n-vertex F -free k-graphs H in which every vertex is contained in at least d

(
n

k−1

)
edges

in H. A natural variation of the Turán density, introduced by Mubayi and Zhao [22], is the
codegree Turán density defined as follows. Given a k-graph H, the degree dH(S) of a set of
vertices S is the number of edges containing it. The minimum codegree δco(H) of H is the
minimum of dH(S) over all (k−1)-subsets S of V (H). The codegree Turán number exco(n, F ) is
the maximum δco(H) an n-vertex F -free k-graph H can admit, and the codegree Turán density
πco(F ) is defined as

πco(F ) = lim
n→∞

exco(n, F )

n
.

This limit always exists ([22]), and it is not hard to see that πco(F ) ≤ π(F ) for any k-graph F .
In particular, πco(F ) = π(F ) when F is a graph.

For k ≥ 3, similar as the Turán density, determining the codegree Turán density of a k-graph
seems also very difficult in general. In the late 1990s, Nagle [23] and Czygrinow and Nagle [5]

conjectured that πco(K
(3)−
4 ) = 1

4 and πco(K
(3)
4 ) = 1

2 , respectively. The πco(K
(3)−
4 ) case was

only recently settled by Falgas-Ravry, Pikhurko, Vaughan and Volec [12] via the flag algebra
technique. There are few sporadic 3-graphs whose codegree Turán densities are known: the

Fano plane [21], F3,2 with V (F3,2) = [5] and E(F3,2) = {123, 124, 125, 345} [11], and C
(3)−
ℓ with

ℓ ≥ 5, the tight cycle of length ℓ with one edge removed [24].
Recently, Piga and Schülke [25] showed that surprisingly the codegree Turán density can be

arbitrarily close to zero for k-graphs when k ≥ 3. Among all known variations of Turán density
[1, 15, 20, 26, 29], this is the first example with zero being an accumulation point. For instance,
there is no k-graph with its Turán density and positive codegree Turán density lying in (0, k!/kk)
and (0, 1/k) respectively, and no 3-graph with its uniform Turán density lying in (0, 1/27). So it
would be very interesting if one can characterize all k-graphs with zero codegree Turán density.

Problem 1.1. For k ≥ 3, characterize all k-graphs F with πco(F ) = 0.

Based on the result of Piga and Schülke [25], Problem 1.1 is likely to be very challenging
as one cannot directly mimic the known characterization of the usual Turán density or other
variations being zero by a single lower bound construction to avoid all k-graphs with positive
codegree Turán densities.

In this paper, we mainly investigate Problem 1.1 for 3-graphs and our main contribution
includes the following two parts. Firstly, we give a necessary condition for a 3-graph with
vanishing codegree Turán density using its uniform Turán density. Secondly, introducing an
additional layered structure condition (which we conjecture is also necessary), we provide a
sufficient condition for a 3-graph having a vanishing codegree Turán density.

1.1 A necessary condition

For real numbers d ∈ [0, 1] and η > 0, an n-vertex k-graph H is said to be uniformly (d, η)-dense

if for all U ⊆ V (H), it holds that
∣∣∣(Uk) ∩ E(H)

∣∣∣ ≥ d
(|U |

k

)
− ηnk. Given a k-graph F , the uniform
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Turán density of F is defined as

π (F ) = sup{d ∈ [0, 1] : for every η > 0 and n0 ∈ N, there exists an F -free,

uniformly (d, η)-dense k-graph H with |V (H)| ≥ n0}.

Erdős and Sós [9] first considered the uniform Turán problems for 3-graphs and conjectured that

π (K
(3)−
4 ) = 1

4 . This conjecture was recently confirmed by Glebov, Král’ and Volec [14] using
flag algebra, and later by Reiher, Rödl and Schacht [31] via the hypergraph regularity method.

For K
(3)
4 , a construction due to Rödl [32] shows that π (K

(3)
4 ) ≥ 1

2 , but whether
1
2 is the correct

value of π (K
(3)
4 ) still remains open. Since then, the hypergraph regularity method has been

widely used in this area and many results have been obtained [3, 4, 13, 18, 29]. In particular,
Reiher, Rödl and Schacht [29] characterized all 3-graphs with vanishing uniform Turán density,
and provided a construction showing that the uniform Turán density cannot lie in the interval
(0, 1

27). For more results and problems on this topic and other variants, we refer the readers
to [2, 6, 7, 17, 19, 27, 28, 30].

Our first result provides a necessary condition for a 3-graph having vanishing codegree Turán
density using its uniform Turán density, and implies the relationships in Figure 1.

Theorem 1.2. Let F be a 3-graph. If πco(F ) = 0, then π (F ) = 0.

π(F ) = 0

πco(F ) = 0

π (F ) = 0

Figure 1: The relationships among Turán density, codegree Turán density and uniform Turán
density for 3-graphs.

The following closely related question was recently raised by Falgas-Ravry, Pikhurko, Vaughan
and Volec [12].

Question 1.3 ([12]). For any 3-graph F , is it true that π (F ) ≤ πco(F )?

Falgas-Ravry and Lo [10] provided a positive answer to this question under a stronger uniform
denseness assumption. We answer Question 1.3 in the negative by providing an infinite sequence
of counterexamples.

Theorem 1.4. For every ε > 0, there exists a 3-graph F with π (F ) ≥ 4/27 and πco(F ) ≤ ε.

Note that Theorem 1.2 together with Theorem 1.4 provides an alternative proof of the result
of Piga and Schülke [25] that the codegree Turán density can be arbitrarily close to zero for
3-graphs.

1.2 A sufficient condition

At the moment, there are very few known non-trivial (i.e. not tripartite) examples of 3-graphs
with zero codegree Turán density. These are limited to tight cycles of length ℓ ≥ 5 with one edge

removed, C
(3)−
ℓ , proved by by Piga, Sales, and Schülke [24], and zycles of length ℓ ≥ 3 with one

edge removed, Z
(3)−
ℓ , proved by Piga and Schülke [25]. Here, the zycle of length ℓ is defined as the

3-graph F with V (F ) = ∪ℓ
i=1{vi, ui} and E (F ) =

(
∪ℓ−1
i=1{uiviui+1, uivivi+1}

)
∪{uℓvℓu1, uℓvℓv1}.

The second part of our work proves that πco(F ) = 0 is equivalent to π (F ) = 0 for a
large class of 3-graphs F , which we call layered 3-graphs and are defined as follows with a
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hierarchical structure and some kind of “1-degenerateness”. In particular, our result generalizes
those in [24, 25]: the above two known examples of 3-graphs with zero codegree Turán density
are layered 3-graphs.

A 3-graph F is called layered if there exists a function f : V (F ) → N such that the following
conditions hold.

(A1) In each edge uvw there is one vertex whose label is strictly greater than the other two.

(A2) If two edges uvw and u′v′w′ satisfy max{f(u), f(v), f(w)} = max{f(u′), f(v′), f(w′)}, then
the labels in both edges are a permutation of each other.

(A3) If two edges uvw and u′v′w′ satisfy f(u) = f(u′) and f(v) = f(v′), then f(w) = f(w′).

We call f a layered function of F , and call the set of vertices v ∈ V (F ) such that f(v) is the
i-th smallest integer in the range of f the i-th layer of F .

The second main result of our work is as follows.

Theorem 1.5. If F is a layered 3-graph, then πco(F ) = 0 if and only if π (F ) = 0.

Theorem 1.5 gives a sufficient condition for a 3-graph to have vanishing codegree Turán
density: if a 3-graph F is layered and satisfies π (F ) = 0, then πco(F ) = 0. While π (F ) = 0
is indispensable by Theorem 1.2, we believe that the layered structure is also necessary. We
propose the following conjecture characterizing 3-graphs with vanishing codegree Turán density.

Conjecture 1.6. For a 3-graph F , πco(F ) = 0 if and only if F is layered and satisfies π (F ) = 0.

It is known that π (F ) = 0 holds for any linear 3-graph F (see Theorem 3.1). So a special
case of Conjecture 1.6 is the following.

Conjecture 1.7. For a linear 3-graph F , πco(F ) = 0 if and only if F is layered.

We show that this seemingly weaker conjecture is in fact equivalent to Conjecture 1.6, which
suggests that the linear 3-graph case might be crucial for resolving Conjecture 1.6.

Theorem 1.8. Conjecture 1.6 and Conjecture 1.7 are equivalent.

We now present some applications of Theorem 1.5. The first one characterizes 3-graphs in a
special family with vanishing codegree Turán density. A layered 3-graph F on two layers is said
to be a (2, 1)-type 3-graph, that is, V (F ) can be partitioned into two parts such that each edge
of F has two vertices in one part (i.e. the first layer) and one vertex in the other part (i.e. the
second layer). As the simplest layered 3-graphs, (2, 1)-type 3-graphs play a pivotal role in both
of our main results Theorem 1.2 and Theorem 1.5. We need some definitions. Given a vertex
u in a 3-graph F , its link graph, denoted by LF (u), is the graph with V (LF (u)) = V (F ) \ {u}
and E(LF (u)) = {vw : uvw ∈ E(F )}. Let S be a finite set, we say that σ is a labeling of S if
σ : S → [|S|] is a bijection. Let G be a graph and σ be a labeling of V (G). Let u, v, w ∈ V (G) and
uvw form a path of length two in G. We say that uvw is a monotone P3 if σ(u) < σ(v) < σ(w)
or σ(u) > σ(v) > σ(w).

It is well known that for a 3-graph F , π(F ) = 0 if and only if F is tripartite. Note that a
tripartite 3-graph is of (2, 1)-type. Together with Lemma 3.6, Theorem 1.5 implies the following
characterization of (2, 1)-type 3-graphs F with πco(F ) = 0.

Corollary 1.9. For a (2, 1)-type 3-graph F , πco(F ) = 0 if and only if there is a labeling of the
first layer of F such that LF (v) contains no monotone P3 for every vertex v in the second layer.

4



Note that if a graph has no monotone P3 under a labeling, then the graph must be bipartite.
So for a (2, 1)-type 3-graph F with πco(F ) = 0, the link graphs LF (v) are bipartite for all vertices
v in the second layer (the bipartitions could be different). Thus, Corollary 1.9 implies that every
linear (2, 1)-type 3-graph F , e.g. Fano plane with one edge removed, satisfies πco(F ) = 0.

In the next application, we use Theorem 1.5 and Corollary 1.9 to recover the results for

C
(3)−
ℓ and Z

(3)−
r in [24, 25].

Corollary 1.10. For ℓ ≥ 5 and r ≥ 3, πco(C
(3)−
ℓ ) = πco(Z

(3)−
r ) = 0.

Proof. As indicated in [24], every C
(3−)
ℓ with ℓ ≥ 5 is contained in a blow-up of C

(3)−
5 , so we only

need to show that πco(C
(3)−
5 ) = 0 as any hypergraph and its blow-up have the same codegree

Turán density (see e.g. [22]). Now one can easily check that C
(3)−
5 is a (2, 1)-type 3-graph

satisfying the condition in Corollary 1.9.

For Z
(3)−
r with r ≥ 3, suppose

V
(
Z(3)−
r

)
= ∪r

i=1{vi, ui} and E
(
Z(3)−
r

)
=
(
∪r−1
i=1 {uiviui+1, uivivi+1}

)
∪ {urvru1}.

Let σ(ui) = 2i− 1 and σ(vi) = 2i for 1 ≤ i ≤ r, and define

f(u) =


r, if u = u1;

r + 1, if u = v1;

i− 1, if u ∈ {ui, vi} and 2 ≤ i ≤ r.

It is not hard to verify that σ is a labeling satisfying (B2) in Theorem 3.1 and f is a layered

function. Therefore, πco(Z
(3)−
r ) = 0 follows from Theorem 1.5.

Our approach. To prove Theorem 1.2, a natural approach is to utilize a vanishing uniform
Turán condition (B2) by Reiher, Rödl and Schacht [29] (see Theorem 3.1), and look for hyper-
graphs satisfying (B2) and linear minimum codegree. This, however, fails to work as there are
uniformly dense hypergraphs not containing any subhypergraph with linear minimum codegree,
see the discussion in Section 3.1. Instead of working with (B2), we observe a reformulation of
(B2) using monotone paths in the link graphs (Lemma 3.4) and a variant for (2, 1)-type 3-graphs
(Lemma 3.6). A key step in our proof is to show that we may further assume that the forbidden
(2, 1)-type 3-graph F possesses certain connectedness condition (Lemma 3.9), which allows us
to force a clustering phenomenon (Claim 3.11) in our random geometric (2, 1)-type construction
to avoid F . We then link this (2, 1)-type 3-graph cyclically to obtain the final construction.

To prove Theorem 1.4, we utilize the so-called tensor product and the fact that the product
is contained in large blow-ups of any component. We then observe that for any 3-graph F with
minimum codegree at least two, there is a supersaturation phenomenon for F in 3-graphs with
linear minimum codegree. On the other hand, such F has positive uniform Turán density. We
can then take tensor product of such F to obtain counterexamples.

To prove Theorem 1.5, we first note a natural connection between certain half-bipartite
graphs and the vanishing condition in Lemma 3.4, as well as a connection between graph dis-
tributions and linear codegree condition. Then applications of Ramsey’s theorem show that
in dense graph distributions any half-bipartite graph on a fixed vertex set will appear with a
positive probability (Lemmas 4.3 and 4.4). This enables us to embed any layered 3-graph on two
layers and with vanishing uniform Turán density into a (2, 1)-type 3-graph, assuming that any
pair in one part of the (2, 1)-type 3-graph has a positive degree in the other part (Lemma 4.8),
which is one of the key steps in our proof. Since the (2, 1)-type vanishing condition (Lemma 3.6)
is well compatible with the layered structure (Lemmas 4.5 and 4.6), gluing in a correct way
several copies of the 3-graph obtained by removing from F all vertices on the highest layer, we
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can inductively embed layer by layer any layered 3-graph F with π (F ) = 0 into any 3-graph
with a positive codegree condition using Lemma 4.7 and Lemma 4.8.

Notations. Let F be a 3-graph. The shadow graph of F , denoted by ∂F , is the graph with
V (∂F ) = V (F ) and E(∂F ) = {uw : uvw ∈ E(F )}. Let u, v be two vertices of the 3-graph F .
We say that w ∈ V (F ) is a coneighbor of u, v if uvw ∈ E(F ). The coneighbor set of u, v is
defined as NF (uv) = {w : uvw ∈ E(F )}. For a (hyper)graph G and a set of vertices W ⊆ V (G),
denote by G−W the (hyper)graph obtained from deleting vertices in W from G.

The following operation provides us a natural way to merge several labelings into a larger
one. Let S1, S2 be two disjoint finite sets and let σ1, σ2 be two labelings of S1, S2 respectively.
The sum of σ1 and σ2, denoted by σ1 ⊕ σ2, is a labeling of S1 ∪ S2 where

σ1 ⊕ σ2(s) =

{
σ1(s), s ∈ S1;
σ2(s) + |S1|, s ∈ S2.

For more than two labelings σ1, σ2, . . . , σk, the sum of them, denoted by
∑k

i=1 σi, is inductively
defined by

k∑
i=1

σi =

(
k−1∑
i=1

σi

)
⊕ σk.

Let S be a finite set and σ′ : S → Z be an injection. We say that a labeling σ of S is induced by
σ′ if for every s1, s2 ∈ S, σ(s1) > σ(s2) if and only if σ′(s1) > σ′(s2). Obviously, σ exists and is
unique.

2 A counterexample to Question 1.3

In this section, we prove Theorem 1.4 to show the existence of 3-graphs F with π (F ) > πco(F ).
We start by constructing the 3-graph F , then show that πco(F ) ≤ ε, and finally that π (F ) ≥
4/27.

Proof of Theorem 1.4. For each integer k ≥ 4, let Fk be the family of all k-vertex 3-graphs with
minimum codegree at least two. Denote the elements of Fk as {F1, F2, . . . , Fℓ}. We define the
3-graph F̃k with vertex set V (F1)× V (F2)× · · · × V (Fℓ), and a triple of vertices u, v, w ∈ V (F )
form an edge if for every 1 ≤ i ≤ ℓ, the i-th coordinates of the three vertices form an edge of Fi.
This is sometimes referred to as the tensor product of the elements of Fk. A simple but useful
fact about F̃k we shall use is that F̃k is contained as a subgraph in a kℓ−1-blowup of any Fi ∈ Fk

where each vertex is replaced by kℓ−1 copies.

Claim 2.1. For every ε > 0, there exists k such that πco(F̃k) ≤ ε.

Proof of claim. We choose parameters satisfying 1/n ≪ 1/k ≪ ε. Let H be an n-vertex 3-graph
with δco(H) ≥ εn. Let S be a set of k vertices from H, sampled uniformly at random. Given a
pair of vertices u, v ∈ S, the probability that their codegree is at most 1 can be upper-bounded
by (k − 2)(1− ε)k−3, since at least k − 3 of the remaining vertices of S must be excluded from
NH(uv), and there are k−2 ways of selecting the potential neighbor. Therefore, the probability
that δco(H[S]) ≤ 1 is at most

(
k
2

)
(k − 2)(1− ε)k−3, which is less than 1/2 for k large enough.

Therefore, there are
(
n
k

)
/2 ways of selecting S so that H[S] is an element of Fk. So by the

pigeonhole principle there exists i such that there are at least
(
n
k

)
/(2|Fk|) choices of S such

that H[S] = Fi. For n large enough, H contains a kℓ−1-blowup of Fi which contains F̃k as a
subgraph, so we conclude that πco(F̃k) ≤ ε. ■

Claim 2.2. For each k ≥ 4, we have π (F̃k) ≥ 4/27.
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Proof of claim. Let G be a complete (2-)graph on the vertex set [n], where the edges are ran-
domly colored red with probability 2/3 and blue with probability 1/3. Then construct the
3-graph H on the same vertex set [n] by placing an edge on the triples r < s < t if rs and rt
are red and st is blue. By a standard probabilistic argument, one can show that for any η > 0,
with high probability, H is uniformly (4/27, η)-dense. We will show that H does not contain a
copy of F̃k.

Suppose on the contrary that F̃k ⊆ H. Then by the construction of H, there is a labeling σ
of V (F̃k) and an edge coloring of ∂F̃k such that for any uvw ∈ E(F̃k) with σ(u) < σ(v) < σ(w),
uv and uw are red and vw is blue. We say that two vertices u, v ∈ V (F̃k) are disjoint if for all
1 ≤ i ≤ ℓ, the i-th coordinates of u and v are distinct. Note that by the construction of F̃k, a
pair of vertices are contained in at least two edges if and only if they are disjoint.

Let v ∈ V (F̃k) be the vertex with minimum σ(v) such that there exists a vertex u with
σ(u) < σ(v) which is disjoint from v. Therefore, there is a vertex w with uvw ∈ E(F̃k) (and
then v and w are also disjoint). Further, a vertex u′, different from u, with u′vw ∈ E(F̃k) exists.
Since u, u′, v, w are pairwise contained in some edge of F̃k, they are pairwise disjoint. Then, by
the minimality of v we have σ(u) < σ(v) < σ(u′), σ(w). But then we reach a contradiction that
the pair vw is blue in the edge uvw while it is red in the edge u′vw. ■

Theorem 1.4 follows immediately from the above two claims.

3 The necessity of vanishing uniform Turán density

In this section, we prove Theorem 1.2 by showing that πco(F ) > 0 for any 3-graph F with
π (F ) > 0. For this purpose, we first prepare some important properties possessed by 3-graphs
F with π (F ) > 0 in the subsequent three sections, and then in Section 3.4 complete our proof
using a random geometric construction.

3.1 A first attempt

To prove Theorem 1.2, a natural idea is to utilize the following characterization of 3-graphs with
vanishing uniform Turán density due to Reiher, Rödl and Schacht [29].

Theorem 3.1 (Reiher, Rödl and Schacht, [29]). For any 3-graph F , the following are equivalent.

(B1) π (F ) = 0;

(B2) there is a labeling σ of the vertex set V (F ) and a 3-coloring ϕ : ∂F → {red,blue,green}
such that every edge uvw ∈ E(F ) with σ(u) < σ(v) < σ(w) satisfies

ϕ(uv) = red, ϕ(uw) = blue, ϕ(vw) = green.

Fix an arbitrary 3-graph F with πco(F ) = 0. Suppose for some ε > 0 and infinitely many
integers n, one can construct n-vertex 3-graphs Hn satisfying (B2) and δco(Hn) ≥ εn. Then
as πco(F ) = 0, F must be a subhypergraph of Hn for some sufficiently large n. Inheriting
from Hn, F also satisfies condition (B2), implying that π (F ) = 0 by Theorem 3.1 as desired.
Unfortunately, we note that this idea is not feasible by the following simple observation.

Observation 3.2. Let H be any 3-graph satisfying condition (B2) in Theorem 3.1. Then
δco(H

′) ≤ 1 for any H ′ ⊆ H.

Proof. Clearly, H ′ also satisfies condition (B2). Let σ be a labeling of V (H ′) and ϕ be a 3-
coloring of ∂H ′ satisfying condition (B2). If dH′(uv) = 0 for the two vertices u, v ∈ V (H ′) with
σ(u) = 1 and σ(v) = 2, then we are done. Otherwise, let uvw be an edge of H ′. Then condition
(B2) implies that ϕ(vw) = green, and therefore dH′(vw) = 1.
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By a construction in [29], for every η > 0, there is an infinite sequence of uniformly ( 1
27 , η)-

dense 3-graphs satisfying condition (B2), which together with the above observation provides a
negative answer to the following question asked by Falgas-Ravry, Pikhurko, Vaughan and Volec
[12].

Question 3.3. Let (Hn)n∈N be a sequence of uniformly dense 3-graphs with density d > 0.
Must there exist a sequence of subhypergraphs (H ′

n)n∈N with H ′
n ⊆ Hn, |V (H ′

n)| → ∞ and
δco(H

′
n)/|V (H ′

n)| bounded away from zero?

3.2 A (2, 1)-type vanishing condition

In our approach, we do not insist on satisfying (B2) globally. We will construct infinitely many
3-graphs satisfying (B2) locally. For this purpose, the following reformulation of Theorem 3.1
using the structure property of link graphs is more helpful for us.

Lemma 3.4. For any 3-graph F , the following are equivalent.

• π (F ) > 0;

• for every labeling σ of V (F ), there is some vertex v ∈ V (F ) such that LF (v) contains a
monotone P3.

Proof. For one side, suppose π (F ) > 0, and to the contrary that there exists a labeling σ of
V (F ) such that for every v ∈ V (F ), LF (v) does not contain a monotone P3. For any uv ∈ E(∂F )
with σ(u) < σ(v) and w ∈ NF (uv), let

ϕ(uv) =


red, σ(w) > σ(v);

blue, σ(u) < σ(w) < σ(v);

green, σ(w) < σ(u).

Now we show that ϕ is well defined. Otherwise, there are w1, w2 ∈ NF (uv) such that σ(w1) <
σ(v) < σ(w2) or σ(w1) < σ(u) < σ(w2) holds, then either w1vw2 is a monotone P3 in LF (u) or
w1uw2 is a monotone P3 in LF (v), which contradicts to our assumption. But then this coloring
ϕ and the labeling σ implies π (F ) = 0 by Theorem 3.1, which is also a contradiction.

For the other side, suppose that for every labeling σ of V (F ), there is some vertex v ∈ V (F )
such that LF (v) contains a monotone P3. If a coloring ϕ in Theorem 3.1 exists for some labeling
σ of V (F ), then by our assumption, there is a monotone P3 = w1vw2 with σ(w1) < σ(v) < σ(w2)
in LF (u) for some u ∈ V (F ). Now we consider the color of uv. If σ(u) < σ(v), then uvw2 ∈ E(F )
implies that ϕ(uv) = red while uw1v ∈ E(F ) implies that ϕ(uv) = blue or green, a contradiction.
If σ(u) > σ(v), then vuw2 ∈ E(F ) implies that ϕ(uv) = red or blue while w1vu ∈ E(F ) implies
that ϕ(uv) = green, again a contradiction. Therefore, π (F ) > 0 follows.

Actually, one can easily check that the above proof implies the following.

Corollary 3.5. For any 3-graph F , a labeling σ of V (F ) satisfies (B2) if and only if LF (v)
contains no monotone P3 for every v ∈ V (F ).

The next lemma strengthens Lemma 3.4 for (2, 1)-type 3-graphs, which will play an important
role in our remaining proof. For convenience, when we later mention a (2, 1)-type 3-graph with
respect to a partition X ∪ Y , we always mean that each edge of this 3-graph has two vertices in
X and one vertex in Y . That is, the order of X,Y in the union matters.

Lemma 3.6. Let F be a (2, 1)-type 3-graph with respect to V (F ) = A ∪ B. Then π (F ) > 0 if
and only if for every labeling of A, there exists u ∈ B such that LF (u) contains a monotone P3.

8



Proof. For one side, suppose π (F ) > 0. Let σ1 be a labeling of A and σ2 be a labeling of B,
σ = σ1 ⊕ σ2. By Lemma 3.4, there is some u ∈ A ∪ B such that LF (u) contains a monotone
P3 with respect to σ. If u ∈ A, then LF (u) is a bipartite graph on two parts A and B. In this
case, any P3 in LF (u) has two end points lying in one part and the mid point lying in the other
part. Since any vertex in B has a larger label than any vertex in A, all of P3 in LF (u) are not
monotone with respect to σ. Therefore, u ∈ B and the monotone P3 (with respect to σ) lies in
A and is also monotone with respect to σ1.

For the other side, let σ be a labeling of A ∪B. Restricting σ to A induces a labeling of A,
denoted by σ0. By the assumption, there is some u ∈ B such that LF (u) contains a monotone
P3 with respect to the labeling σ0. Note that this monotone P3 is also monotone with respect
to the labeling σ. Hence, π (F ) > 0 follows from Lemma 3.4, which finishes the proof.

3.3 Reducing to ‘connected’ (2, 1)-type 3-graphs

Let F be a 3-graph. A vertex partition A∪B ∪C of V (F ) is said to be good if F [A∪B], F [B ∪
C], F [C ∪A] are all (2, 1)-type 3-graphs, and there are no other edges in F . When proving The-
orem 1.2, we will use 3-graphs with a good vertex partition. The following lemma helps us to
restrict our attention to (2, 1)-type 3-graphs. It states that in a 3-graph F with π (F ) > 0, if
V (F ) admits a good vertex partition, then we can always find a (2, 1)-type subhypergraph F ′

with π (F ′) > 0.

Lemma 3.7. Let F be a 3-graph with π (F ) > 0. If there exists a good vertex partition A∪B∪C
of V (F ), then π (F [A ∪B]) > 0 or π (F [B ∪ C]) > 0 or π (F [C ∪A]) > 0.

Proof. Let F1, F2 and F3 denote the three induced (2, 1)-type 3-graphs F [A ∪B], F [B ∪C] and
F [C ∪ A], respectively. Suppose to the contrary that π (Fi) = 0 for all 1 ≤ i ≤ 3. Then by
Lemma 3.6, there are three labelings σA, σB, σC of the three parts A,B,C, respectively, such
that for every a ∈ A, b ∈ B and c ∈ C, no monotone P3 exists in LF1(b), LF2(c) and LF3(a). Let
σ = σA ⊕ σB ⊕ σC . Now we prove that for every v ∈ V (F ), LF (v) does not contain a monotone
P3 with respect to σ, and hence a contradiction follows from Lemma 3.4.

For any b ∈ B, note that LF (b) is the disjoint union of LF1(b) and LF2(b). Since there is
no monotone P3 in LF1(b) with respect to the labeling σA, there is no monotone P3 in LF1(b)
with respect to the labeling σ. On the other hand, noting that LF2(b) is a bipartite graph with
partition B ∪ C, so the two endpoints of any P3 in LF2(b) are both located in one part while
the mid point is located in the other part. Since σ = σA ⊕ σB ⊕ σC , one can easily see that no
monotone P3 exists in LF2(b). Consequently, for any b ∈ B, there is no monotone P3 in LF (b)
with respect to the labeling σ. By similar arguments, the same holds for any x ∈ A ∪ C as
desired.

We will need one more reduction using the following auxiliary graph.

Definition 3.8 (Auxiliary graph Γ). Let F be a (2, 1)-type 3-graph with respect to A ∪ B.
Define an auxiliary graph ΓF as follows: V (ΓF ) = A, and for any two vertices u, v ∈ A, uv is
an edge of ΓF if and only if there is w ∈ A and x ∈ B such that uwx, vwx ∈ E(F ).

In other words, two vertices in A are joined in ΓF if they are the endpoints of a P3 in the
link graph of some vertex in B. Assisted by this auxiliary graph, we can extract from any
(2, 1)-type 3-graph F with π (F ) > 0 a subhypergraph F ′, which admits certain ‘connectedness’
property and satisfies π (F ′) > 0. This ‘connectedness’ property of F ′ is a key ingredient for
our construction, allowing us to prove a cluserting phenomenon in links of our construction.

Lemma 3.9. Let F be a (2, 1)-type 3-graph with respect to V (F ) = A ∪ B. If π (F ) > 0, then
there is an induced subhypergraph F ′ ⊆ F with π (F ′) > 0 such that ΓF ′ is a subgraph of some
connected component of ΓF .
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Proof. Let A1, A2, . . . , Ak ⊆ A be the vertex sets of all the connected components of ΓF . For
each i ∈ [k], let

Bi = {b : ba1a2 ∈ E(F ), b ∈ B, a1, a2 ∈ Ai},

and Fi = F [Ai ∪ Bi]. Then one can easily check that ΓFi is a subgraph of the connected
component of ΓF on vertex set Ai. Now it suffices to show that there is some i ∈ [k] such that
π (Fi) > 0.

We prove it by contradiction. If π (Fi) = 0 for all i ∈ [k], by Lemma 3.6, there is a labeling
σi of Ai such that for every b ∈ Bi, there is no monotone P3 in LFi(b) with respect to σi. Setting
σ =

∑k
i=1 σi, we next show that for every b ∈ B, there is no monotone P3 in LF (b) with respect

to σ, which contradicts to Lemma 3.6.
Let xay be a P3 in LF (b) for some b ∈ B with x ∈ Ai, a ∈ Aj , y ∈ Aℓ. By the definition of

ΓF , xy is an edge of ΓF , and therefore i = ℓ. If i = j, then x, a, y ∈ Ai, b ∈ Bi and xay can
not be a monotone P3 with respect to σ since it is not monotone with respect to σi. If i ̸= j,
then either σ(a) > max{σ(x), σ(y)} or σ(a) < min{σ(x), σ(y)}, and therefore xay is again not
a monotone P3. Combining these cases, we conclude that there is no monotone P3 with respect
to σ in LF (b).

3.4 Proof of Theorem 1.2

We start with a construction for (2, 1)-type 3-graphs.

Theorem 3.10. For any positive integer k, there exists ε = εk > 0 such that for infinitely many
integers n, there exists a (2, 1)-type 3-graph H with respect to a vertex partition V (H) = A ∪B
such that |A| = |B| = n and the following conditions are satisfied.

(C1) dH(a1a2) ≥ εn for any two vertices a1, a2 ∈ A;

(C2) dH(ab) ≥ εn for every a ∈ A and b ∈ B;

(C3) H contains no copy of any 3-graph F with |V (F )| ≤ k and π (F ) > 0.

Proof. Set εk = 1
32k2

, and let n, q, r be integers such that r = 4k, n = qr + 1 and n ≫ r. All
the indices in the following construction are taken modulo n.

We first construct a random graph G on vertex set {a0, a1, . . . , an−1}. For every 0 ≤ i ≤ n−1
and 0 ≤ j ≤ r − 1, let

Sij = {ai+t : t ∈ {jq + 1, jq + 2, · · · , (j + 1)q}}.

Let X0, X1, . . . , Xn−1 be n independent random variables, each of which takes a value from
{0, 1, . . . , r−1} uniformly at random. Define our random graphG with V (G) = {a0, a1, . . . , an−1}
such that for every 0 ≤ i < j ≤ n− 1, aiaj ∈ E(G) if and only if ai ∈ SjXj and aj ∈ SiXi . Note
that aiaj forms an edge with probability 1

r2
.

Let G0, G1, . . . , Gn−1 be i.i.d. copies of G on the same vertex set {a0, a1, . . . , an−1}. Define
a (2, 1)-type 3-graph H with vertex partition A ∪ B as follows: A = {a0, a1, . . . , an−1}, B =
{b0, b1, . . . , bn−1}, and aiajbℓ ∈ E(H) if and only if aiaj ∈ E(Gℓ). In other words, Gℓ is the link
graph of bℓ for any 0 ≤ ℓ ≤ n− 1.

Finishing our proof, we next show that (C1) and (C2) are satisfied with high probability
and (C3) is guaranteed by a geometric property of H.

Verifying (C1). Note that for any ai, aj ∈ A, dH(aiaj) is exactly the number of Gℓ containing
aiaj as an edge. Since P (aiaj ∈ G) = 1

r2
and Gℓ is an i.i.d. copy of G, it follows that dH(aiaj) ∼

Bin(n, 1
r2
). It follows from Chernoff’s inequality that P

(
dH(aiaj) ≤ n

2r2

)
≤ e−

n
8r2 . Therefore,
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taking a union bound over
(
n
2

)
such pairs, the probability that dH(aiaj) >

n
2r2

for every pair of

vertices ai, aj is at least 1−
(
n
2

)
e−

n
8r2 .

Verifying (C2). Let ai ∈ A, bℓ ∈ B. Since dH (aibℓ) = dGℓ
(ai) and Gℓ is an i.i.d. copy of

G, dH (aibℓ) and dG(ai) are identically distributed. Conditioning on the choice of Xi, for each
aj ∈ SiXi , the probability that aiaj ∈ E(G) is exactly 1

r and for each aj /∈ SiXi , the probability
that aiaj ∈ E(G) is zero. Since the choice of each Xj is independent, dG(ai) ∼ Bin(q, 1r ).

Thus, E (dH (aibℓ)) =
n
r2
. It follows from Chernoff’s inequality that P

(
dH (aibℓ) ≤ n

2r2

)
≤ e−

n
8r2 .

Therefore, taking a union bound over n2 such pairs, the probability that dH (aibℓ) > n
2r2

for

every ai and bℓ is at least 1− n2e−
n

8r2 .

Verifying (C3). Let F be a 3-graph with |V (F )| ≤ k and π (F ) > 0, and suppose to the
contrary that H contains a copy of F . Inheriting from the structure of H, F must be a (2, 1)-
type 3-graph. By Lemma 3.9, for some A′ ⊂ A and B′ ⊂ B, the induced subhypergraph
F ′ := F [A′ ∪ B′] of F satisfies that π (F ′) > 0 and ΓF ′ is a subgraph of some connected
component of ΓF . Let us imagine that the elements of A are distributed on the unit circle of the
complex plane with aℓ being the point e2πℓi/n. The following claim shows a ‘clustering’ property
of F ′.

Claim 3.11 (Clustering). For every b ∈ B and aj ∈ A, all the neighbors of aj in LH(b) lie in
an arc of length at most 2π

r not containing aj. Consequently, all the vertices of A′ lie on an
open half circle.

Proof of claim. The first part of the claim follows from the constructions of the random graph
G and the 3-graph H. Indeed, all the neighbors of aj in LH(b) concentrate on the random arc
SjXj of length q−1

qr+1 · 2π ≤ 2π
r , and note that the arc SjXj does not contain aj .

For the second part, by the definition of ΓF and the assumption that F ⊆ H, each edge xy
in any component of ΓF implies that there is a path xay in LH(b) for some a ∈ A and b ∈ B. So
by the first part, the distance of x, y on the unit circle is at most 2π

r . Since ΓF ′ is a subgraph of
some connected component of ΓF and |A′| ≤ |V (F )| ≤ r

4 , we conclude that every pair of vertices
in A′ has a distance less than π

2 on the unit circle, which implies that all the elements of A′ lie
on an open half circle. ■

Let C be an open half circle containing all the vertices of A′. Along the counter-clockwise
direction of C, we obtain an enumeration x1, x2, . . . , x|A′| of all the vertices in A′. Let σ be the
labeling of A′ defined by setting σ(xj) = j for all 1 ≤ j ≤ |A′|. Recall that π (F ′) > 0. By
Lemma 3.6, for some b ∈ B′, there is a monotone path xℓxsxt in LF ′(b) with ℓ < s < t. By
the first part of Claim 3.11, xℓ and xt lie in some arc R of length at most 2π/r not containing
xs. Since xs ̸∈ R, R has to contain the complement of C, which has length more than π, a
contradiction.

xs

xt xℓ

Figure 2: An illustration of the geometric property of circles that if xt, xs and xℓ lie on a (blue)
half circle, then xt and xℓ lie on the distinct half circles determined by xs and its opposite point.
Therefore, the construction of G implies that xℓ and xt can not be joined to xs simultaneously.
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A remark here is that requiring that n = qr + 1 is just for our convenience to proceed the
proof, our arguments actually hold for all sufficiently large integers n with a tiny modification.
Combining all, we now give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let F be a k-vertex 3-graph with π (F ) > 0. To prove Theorem 1.2, it
suffices to show πco(F ) > 0. Let εk be the constant from Theorem 3.10, and let Ĥ be a 2n-vertex
(2, 1)-type 3-graph satisfying all (C1), (C2) and (C3).

Let H be a 3n-vertex 3-graph which admits a good vertex partition V (H) = A ∪ B ∪ C
with |A| = |B| = |C| = n such that H[A ∪ B], H[B ∪ C] and H[C ∪ A] are all isomorphic to
Ĥ. By (C1) and (C2), δco(H) ≥ εkn. It remains to show that F is not a subhypergraph of
H. Suppose to the contrary that H contains F . Inheriting from the structure of H, there is a
good partition A′ ∪B′ ∪C ′ of V (F ) with A′ ⊆ A,B′ ⊆ B and C ′ ⊆ C. By Lemma 3.7, without
loss of generality, we may assume that π (F [A′ ∪ B′]) > 0. Since |A′ ∪ B′| ≤ |V (F )| = k, by
Theorem 3.10, F [A′ ∪B′] can not be a subhypergraph of H[A ∪B], a contradiction.

4 Layered 3-graphs

In this section, we prove Theorem 1.5, that is, πco(F ) = 0 is equivalent to π (F ) = 0 for every
layered 3-graph F . We first introduce in Section 4.1 the notions of half-bipartite graphs and
dense graph distributions and prove a lemma (Lemma 4.4) which acts as a bridge connecting π
and πco. Then in Section 4.2, we characterize layered 3-graphs with vanishing uniform Turán
density (Lemma 4.5), and present a way of gluing layered 3-graphs (Lemma 4.6) to obtain a
new one with vanishing uniform Turán density, which is a key ingredient in the induction step
when proving Theorem 1.5 in Section 4.3.

4.1 Half-bipartite graphs in dense graph distributions

The first notion is a family of bipartite graphs which is relevant for the characterization of
3-graphs with vanishing uniform Turán density.

Definition 4.1. A graph G on a vertex set with a labeling σ is half-bipartite if it does not
contain a monotone P3. Define the complete half-bipartite graph Bk on 2k vertices to be the
graph on vertices u1, v1, u2, v2, . . . , uk, vk, in increasing order of σ, and with edges being the pairs
uivj for all 1 ≤ i ≤ j ≤ k.

It is not hard to see that a half-bipartite graph must be bipartite. We first observe that the
complete half-bipartite graph is a universal graph for all half-bipartite graphs.

Proposition 4.2. Every half-bipartite graph F on k vertices is an ordered subgraph of Bk.

Proof. Let the vertices of F be w1, w2, . . . , wk in increasing order, then for each i ∈ [k], map wi

to ui if there exists j > i such that wiwj ∈ E(F ), and map it to vi otherwise.

Note that by Lemma 3.4 a characterization of 3-graphs F with π (F ) = 0 is that there exists
a labeling of V (F ) in which the link graph of every vertex is half-bipartite.

Another tool that we will use are graph distributions, which can be thought of as probability
distributions on the space of graphs on a fixed set of vertices. In other words, for each graph G
on a (finite) vertex set S, we assign it a non-negative real number XG, which add up to 1. So
we get a graph distribution on the vertex set S, denoted by X, by setting Pr(X = G) = XG.
Further, if for some ε > 0, Pr(uv ∈ E(X)) ≥ ε holds for every pair of vertices uv, then we say
that X is ε-dense.

Let H be an n-vertex 3-graph satisfying δco(H) ≥ εn. There is a simple way of obtaining
an ε-dense graph distribution X out of H by selecting a vertex v ∈ V (H) uniformly at random,
and then taking X = LH(v).
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So far, we have established a link between π and half-bipartite graphs, and between δco
(and thus πco) and ε-dense graph distributions. The following lemma connects them all.

Lemma 4.3. For every positive integer k and real number ε > 0, there exist a positive integer
n0 and a real number δ > 0 for which the following hold. For every ε-dense graph distribution
X on vertex set [n] with n ≥ n0, there exists a set S of 2k vertices such that, with probability
at least δ, X contains the complete half-bipartite graph Bk in the natural order of numbers on
S as a subgraph.

Proof. We will prove this statement by induction on k. For k = 1 the statement is trivial, since
B1 is a single edge. Let B′

k = Bk −uk. We prove the induction step in two parts. First we show
that if the statement holds for Bk−1 then it holds for B′

k, then we show that if it holds for B′
k

then it holds for Bk as well.
Fix ε > 0. Suppose that the statement holds for k−1, and let δ′ and n′

0 be the corresponding
values of δ and n0. Let X be an ε-dense graph distribution on [n1], where we will choose the
value of n1 later. We construct an auxiliary complete (2k − 2)-graph H1 on [n1] as follows. For
every set S of 2k− 2 vertices, if the complete half-bipartite graph Bk−1 on S appears in X with
probability at least δ′, then color the edge S of H1 in red, otherwise color S in blue.

By the induction hypothesis, the coloring of H1 cannot contain a blue clique of size n′
0.

Therefore, by Ramsey’s theorem, there is an integer n′
1 such that taking n1 ≥ n′

1 concludes that
H1 contains a red clique of size 2k−3+ t for t = ⌊1/δ′⌋+1. Denote the vertices in this red clique
as u1, v1, u2, v2, . . . , uk−1, w1, w2, . . . , wt, in increasing order. For every 1 ≤ i ≤ t, the probability
that the graph Bk−1 on vertices u1, v1, u2, v2, . . . , uk−1, wi appears in X is at least δ′. These
probabilities add up to δ′t > 1, meaning that there exist 1 ≤ i < j ≤ t such that with probability
at least (δ′t− 1)/

(
t
2

)
=: δ1 the graph Bk−1 appears simultaneously on u1, v1, u2, v2, . . . , uk−1, wi

and u1, v1, u2, v2, . . . , uk−1, wj . Then on vertices u1, v1, u2, v2, . . . , uk−1, wi, wj , a copy of B′
k

appears in X with probability at least δ1. This completes the first part of the induction step.
The second part of the induction step is similar to the first one. Take n2 large enough, and let

X be an ε-dense graph distribution on [n2]. We construct a 2-coloring of the complete (2k− 1)-
graphH2 on [n2] by coloring the edge S in red if the graph B′

k on S appears inX with probability
at least δ1, and blue otherwise. Since there cannot be a blue clique of size n′

1, by Ramsey’s
theorem there exists a red clique of size 2k − 3 + 2s for s = ⌊1/δ1⌋ + 1. Denote the vertices of
this clique as u1, v1, u2, v2, . . . , uk−2, vk−2, w1, z1, w2, z2, . . . , ws, zs, vk. There exist 1 ≤ i < j ≤ s
such that, with probability at least δ := (δ1s− 1)/

(
s
2

)
, the graph B′

k appears simultaneously on
u1, v1, u2, v2, . . . , uk−2, vk−2, wi, zi, vk and u1, v1, u2, v2, . . . , uk−2, vk−2, wj , zj , vk. Then a copy of
Bk appears on the vertices u1, v1, u2, v2, . . . , uk−2, vk−2, wi, zi, wj , vk with probability at least δ.
This completes the second part of the induction step.

With an extra application of Ramsey’s theorem, we can find a set S of k vertices in any large
ε-dense graph distribution such that every half-bipartite graph on S appears with a positive
probability.

Lemma 4.4. For every ε > 0 and positive integer k, there exist a positive integer n0 and a real
number δ > 0 with the following property. For every ε-dense graph distribution X on [n] with
n ≥ n0, there exists a set S of k vertices on which every half-bipartite graph appears in X in the
natural order of numbers with probability at least δ.

Proof. Let δ = δ4.3(k, ε), n
′
0 = n04.3(k, ε) be as in Lemma 4.3. Suppose the contrary that for

every set S of k vertices, there exists a half-bipartite graph F that appears with probability less
than δ. On an auxiliary complete k-graph on [n], assign the label F to the edge S.

Since there is a bounded number of half-bipartite graphs on k vertices, by Ramsey’s the-
orem, if n is large enough there exists a clique K of size n′

0 where all edges receive the same
label F . By the choice of n′

0, there exists a set of 2k vertices within this clique for which the
complete half-bipartite graph Bk on these vertices appears in X with probability at least δ. But
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recall Proposition 4.2 that every half-bipartite graph on k vertices is a subgraph of Bk. Thus
there are k vertices in K for which F appears with probability at least δ, contradicting the fact
that this set of k vertices received the label F .

4.2 Layered 3-graphs with vanishing uniform Turán density

Recall that Theorem 3.1 gives a characterization of 3-graphs with vanishing uniform Turán
density. But, in order to prove Theorem 1.5, it turns out to be more useful to get a specific
characterization for layered 3-graphs. Let F be a layered 3-graph with k layers. For all 1 ≤ i <
j ≤ k, we denote by Fi,j the induced subhypergraph of F on the union of the i-th layer and the
j-th layer. Further, we say that {i, j} is a linked pair if there exists an edge in Fi,j . Observe
that by (A1), if {i, j} is a linked pair, then Fi,j is a (2, 1)-type 3-graph such that each edge has
two vertices on the i-th layer and one vertex on the j-th layer.

Lemma 4.5. A layered 3-graph F has π (F ) = 0 if and only if π (Fi,j) = 0 for all linked pairs
{i, j}.

Proof. Let F be a layered 3-graph with k layers. Since Fi,j is a subhypergraph of F , it clearly
holds that if π (F ) = 0 then π (Fi,j) = 0 for any linked pair {i, j}. Next we assume that
π (Fi,j) = 0 for any linked pair {i, j} and prove that π (F ) = 0.

For any linked pair {i, j} with i < j, since Fi,j is a (2, 1)-type 3-graph, by Lemma 3.6 there
exists a labeling σi of the i-th layer such that no vertex v on the j-th layer has a monotone P3 in
its link graph LFi,j (v). By (A3), there cannot be another integer ℓ > i such that {i, ℓ} is also a
linked pair. Therefore, the property above gives exactly one labeling of the i-th layer. For each
of the remaining layers, we fix an arbitrary labeling and denote by σj the labeling of the j-th

layer. Now we define a labeling σ of V (F ) by letting σ =
∑k

i=1 σi, and show that LF (v) does
not contain a monotone P3 for any v ∈ V (F ) .

Let v be a vertex on the i-th layer. Then each component of LF (v) is contained in at most
two layers as otherwise we can find two edges which violate (A3). If a component crosses two
layers, say the j-th layer and the ℓ-th layer with j < ℓ, then the component must be bipartite,
because by (A3) each edge containing v and a vertex of the j-th layer must have the other
vertex in the ℓ-th layer. Moreover, by the definition of σ, the label of each vertex in the j-th
layer is smaller than the one of each vertex in the k-th layer, so there is no monotone P3 in such
component.

If a (nontrivial) component is contained in one layer, say the j-th layer, then we must
have that {i, j} is a linked pair with j < i. Then, because this component of LF (v) is also a
component of LFj,i(v), and LFj,i(v) contains no monotone P3 in the labeling σj , we conclude
that the labeling σ produces no monotone P3 in this component. Therefore, the link graph of
each vertex does not contain a monotone P3, and π (F ) = 0 follows from Lemma 3.6.

The purpose of the subsequent definitions and lemmas is to understand the circumstances
under which the union of layered graphs with vanishing uniform Turán density preserves the
layered structure and the uniform Turán density. This is a crucial piece in the induction step
that allows us to prove Theorem 1.5 .

Let F be a layered 3-graph on k layers under a layered function f . The reduced graph of
F , denoted by F/f , is the graph on vertex set [k], in which we add a 3-edge ijk if F contains
an edge whose vertices are respectively located on the i-th, j-th and k-th layers, and a directed
2-edge i⃗j if F has an edge with two vertices on the i-th layer and one on the j-th layer. In
certain sense, F/f can be seen as the result of contracting each layer of F into a single vertex.

One can easily check that if F1 and F2 are two layered 3-graphs on the same vertex set which
share a common layered function f such that F1/f = F2/f , then f is also a layered function
of the union F1 ∪ F2 and (F1 ∪ F2)/f = F1/f , simply because the triples of layers containing
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edges of F1 ∪ F2 have not changed. In fact, the same happens if for some layers, rather than
identifying the corresponding vertices in F1 and F2, we take the disjoint union instead.

Let F1, F2, . . . , Fℓ be layered 3-graphs on the same vertex set which have k layers under a

common layered function f . Given a subset S ⊆ {1, 2, . . . , k}, we define
(⊕ℓ

i=1 Fi

)
/S as the

S-union of these ℓ layered 3-graphs, in which for each j ∈ S and each vertex v on the j-th layer,
the corresponding copies of the vertex v in these ℓ layered 3-graphs are identified into a single
vertex.

Lemma 4.6. Let F1, F2, . . . , Fℓ be layered 3-graphs on the same vertex set and with the same
reduced graph under a common layered function f . Suppose that π (Fi) = 0 for all 1 ≤ i ≤ ℓ, and
all of them share a common labeling σ satisfying (B2). Then for any set S of layers containing

no linked pair, the 3-graph F =
(⊕ℓ

i=1 Fi

)
/S has π (F ) = 0.

Proof. For every 1 ≤ i ≤ ℓ and each v ∈ V (F ) ∩ V (Fi), we use vi to denote the corresponding
copy of it in Fi. Clearly, for each v ∈ V (F ), assigning f(vi) to it if it comes from V (Fi) produces
a layered function of F . Therefore, by Lemma 4.5, we only need to check that π (Fr,s) = 0 for
any linked pair {r, s}.

The condition in the statement tells us that {r, s} ̸⊆ S. If neither r nor s is in S, then Fr,s

is just the disjoint union of all the 3-graphs (Fi)r,s, and therefore π (Fr,s) = 0. Next we assume
that exactly one of {r, s} is in S. If r ∈ S, then let σr be the labeling of the r-th layer of F which
is induced by σ. Note that for every vertex v on the s-th layer of F , there exists a unique t
such that v ∈ V (Ft). Then LFr,s(v) = L(Ft)r,s(vt), which contains no monotone P3 under σ, and
therefore no monotone P3 under σr. On the other hand, if s ∈ S, then for all 1 ≤ i ≤ ℓ, let σi,r be

the labeling of the r-th layer of Fi which is induced by σ, and let σr =
∑ℓ

i=1 σi,r be the labeling
of the r-th layer of F . For each vertex v on the s-th layer of F , the link graph LFr,s(v) is the
disjoint union of all the link graphs L(Fi)r,s(vi), each of which contains no monotone P3 under σ,
and therefore no monotone P3 under σr. We conclude that in all three cases π (Fr,s) = 0.

4.3 Putting things together

We are almost ready to prove Theorem 1.5. The last piece of the puzzle comes from finding a
way to build F layer by layer. In our case, this will mean that on each step we build a tripartite
3-graph on top of two existing layers, or a (2, 1)-type 3-graph on top of an existing layer. We
will use the two following lemmas for these purposes.

Lemma 4.7. For every ε > 0 and integer t, there exists an integer m with the following property.
If H is a tripartite 3-graph with vertex partition U ∪ V ∪W , each with size at least m, and for

every u ∈ U and v ∈ V we have d(u, v) ≥ ε|W |, then K
(3)
t,t,t is a subgraph of H.

Proof. By double counting on pairs (u, v), we see that H has at least ε|U ||V ||W | edges. By a
simple probabilistic argument, there exist sets U ′ ⊆ U , V ′ ⊆ V , W ′ ⊆ W , each with size exactly
m, spanning at least εm3 edges. This means that the 3-graph on these vertices has density at

least 2ε/9. The lemma follows from the fact that π(K
(3)
t,t,t) = 0.

Lemma 4.8. For every (2, 1)-type 3-graph F with π (F ) = 0 and every ε > 0, there exists an
integer m with the following property. If H is a (2, 1)-type 3-graph with vertex partition U ∪ V ,
each with size at least m, and for each pair u1, u2 ∈ U we have dH(u1, u2) ≥ ε|V |, then F is a
subgraph of H.

Proof. Let U ′ ∪V ′ be a corresponding vertex partition of V (F ) with |U ′| = k. Take an ordering
of the vertices of U , and consider the graph distribution X on U , obtained by randomly sampling
a vertex v ∈ V and taking X = LH(v). Since dH(u1, u2) ≥ ε|V |, we have that X is ε-dense.
Therefore, by Lemma 4.4, there exists δ = δ4.4(k, ε) such that, if m is large enough, there exists
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a set S ⊆ U of size k for which every half-bipartite graph on S appears in X with probability
at least δ.

Since π (F ) = 0, there exists a labeling of U ′ in which no vertex v of V ′ contains a monotone
P3 in its link graph, in other words, LF (v) is a half-bipartite graph on U ′ for each v ∈ V ′. Now
we identify the vertices of U ′ with the vertices of S, in the same order. If |V | ≥ m ≥ |V ′|/δ, then
for each v ∈ V ′, there exist at least |V ′| vertices of V each of which has LF (v) as a subgraph of
its link graph. Thus we can select the image of the vertices of V ′ one by one from V , ensuring
that we do not select the same vertex twice, to complete the copy of F in H.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let F be a layered 3-graph on k layers with π (F ) = 0. We proceed
our proof by induction on k to show that πco(F ) = 0. If k = 1, then by (A1) the 3-graph F
has no edge, and so πco(F ) = 0 holds trivially. Now we assume that k ≥ 2, and the induction
hypothesis is that all layered 3-graphs F ′ on k − 1 layers with π (F ′) = 0 satisfy πco(F

′) = 0.
Given ε > 0, we choose

1/n ≪ 1/m ≪ ε, 1/|V (F )|.

Let H be an n-vertex 3-graph with δco(H) ≥ εn. Our goal is to show that H contains F as a
subgraph.

As π (F ) = 0, we can fix a labeling σ of F as in Lemma 3.4 so that the link graph of every
vertex does not contain a monotone P3. For 1 ≤ i ≤ k, denote by Li the i-th layer of F . Let F̃
be the layered 3-graph on k − 1 layers obtained from F by deleting all vertices in Lk. Clearly,
π (F̃ ) = 0, and so πco(F̃ ) = 0 follows from our induction hypothesis. If no edge in F intersects
Lk, then πco(F ) = πco(F̃ ) = 0. So we assume that at least one edge intersects Lk, and then by
(A1), each such edge contains a unique vertex in Lk. Moreover, by (A2), the layers Li and Lj

containing the other two vertices in each such edge are the same. We consider the two following
cases to finish our proof.

Case 1: i = j. Note that {i, k} is a linked pair and π (Fi,k) = 0. Setting Fi,k and ε/2 into
Lemma 4.8 produces a value of m. Suppose that Li = {v1, v2, . . . , vt} with σ(v1) < σ(v2) <
· · · < σ(vt). For every t-subset S of [m] with S = {s1, s2, . . . , st} and s1 < s2 < · · · < st, we
construct a 3-graph F̃S on k − 1 layers from F̃ by replacing Li with [m] such that sℓ is a copy
of vℓ for every 1 ≤ ℓ ≤ t and r is an isolated vertex for each r ∈ [m] \ S.

Consider the 3-graph F ′ =
(⊕

S∈([m]
t )

F̃S

)
/{i}. Observe that by Lemma 4.6, F ′ is a layered

3-graph on k−1 layers with π (F ′) = 0. Thus πco(F
′) = 0 follows from our induction hypothesis,

implying that H contains a copy of F ′ if n is large enough. Now let U be the vertices of H
corresponding to the i-th layer of F ′ (which, remember, is [m]), and let V be the set of vertices
of H not in the copy of F ′. If n is large enough, then we have both |V | ≥ m and every pair of
vertices in U has codegree in V at least εn/2. By the choice of m, there exists a copy of Fi,k

between U and V . If S is the set of vertices of [m] corresponding to the vertices of U in the
copy of Fi,k, then the copy of FS together with the copy of Fi,k form a copy of F in H, as we
wanted.

Case 2: i ̸= j. Suppose that Li = {u1, u2, . . . , ut1} with σ(u1) < σ(u2) < · · · < σ(ut1) and Lj =
{w1, w2, . . . , wt2} with σ(w1) < σ(w2) < · · · < σ(wt2). Setting ε/2 and t = max{|Li|, |Lj |, |Lk|}
into Lemma 4.7 produces a value of m. Let X = [m] and Y = [2m] \ [m]. For every t1-subset
X = {x1, x2, . . . , xt1} ⊆ X and every t2-subset Y = {y1, y2, . . . , yt2} ⊆ Y with x1 < x2 < · · · <
xt1 and y1 < y2 < · · · < yt2 , we construct a 3-graph F̃X,Y on k− 1 layers from F̃ by replacing Li

with X and replacing Lj with Y such that xr is a copy of ur for every 1 ≤ r ≤ t1, ys is a copy
of ws for every 1 ≤ s ≤ t2 and ℓ is an isolated vertex for each ℓ ∈ [2m] \ (X ∪ Y ).

Consider the 3-graph F ′ =

(⊕
(X,Y )∈(Xt1)×(

Y
t2
) F̃X,Y

)
/{i, j}, which is a 3-graph on k − 1

layers. Note also that by (A3), {i, j} is not a linked pair, and hence π (F ′) = 0 by Lemma 4.6.
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By our induction hypothesis, we have πco(F
′) = 0, meaning that H contains a copy of F ′ if n is

large enough. Let U and V be the sets of vertices on the i-th and j-th layers of this copy of F ′,
and let W be the set of vertices of H outside of this copy of F ′. If n is large enough, then we
have that |W | ≥ m and that for all pairs uv ∈ U × V , the codegree of uv in W is at least εn/2.

By the choice of m, there exists a copy of K
(3)
t,t,t between U , V and W , and therefore a copy of

K
(3)
t1,t2,|Lk| with t1, t2, |Lk| vertices from U, V,W , respectively. If X and Y are the sets of vertices

of X and Y corresponding to the vertices of U and V in the copy of K
(3)
t1,t2,|Lk|, then the copy of

FX,Y together with the copy of K
(3)
t1,t2,|Lk| form a copy of F in H, as we wanted.

We have shown that in all casesH contains F as a subgraph, and so πco(F ) = 0 as desired.

5 Is the layered structure necessary?

In order to prove Conjecture 1.6, one would need to prove that all hypergraphs F which are not
layered satisfy πco(F ) > 0. It seems, unlike the usual Turán density π and the uniform Turán
density π , there are no simple explicit constructions with linear codegree that work for all
non-layered hypergraphs. We give an example to illustrates the difficulty in trying to find such
simple explicit constructions. This example comes from gluing together two layered 3-graphs.
While both layered 3-graphs are very simple and have codegree Turán density zero, the resulting
graph F is not layered and the simplest constructions showing πco(F ) > 0 we can find is already
relatively complex.

5.1 A specific example

Let F1 be the hypergraph on vertices {a, b, c, d, e}, with edges {abc, abd, cde}. Let F2 be the
hypergraph on vertices {e, f, g, h, i, j, k, ℓ} with edges {fgh, fgi, hij, hik, jkℓ, ehℓ}. Let F =
F1 ∪ F2.

g

a

b

f h

c

d

e

i k

j `

Figure 3: The hypergraph F , with F1 in blue and F2 in red.

Observe that F1 and F2 are both layered and π (F1) = π (F2) = 0, so by Theorem 1.5 we
have πco(F1) = πco(F2) = 0. On the other hand, one can check that F is not layered.

We now give a construction showing πco(F ) ≥ 1/12, and in particular that the codegree
density of F is positive. Consider the following hypergraph H with vertex set is partitioned into
twelve equal parts P = {A,B,C,D,E, F,G,H, I, J,K,L}, and an edge is placed if it belongs to
one of the triples in

T = {AAB, ACI, ADG, AEE, AFF , AHJ, AKL, BBC, BDJ, BEH,

BFK, BGG, BIL, CCD, CEF, CGK, CHH, CJL, DDE, DFL,

DHK, DII, EGI, EJJ, EKK, ELL, FGJ, FHI, GHL, IJK}.

A relevant property of T is that every pair of parts XY , including those with X = Y , is
contained in exactly one triple in T . Because of this, any pair of edges uvw and uvw′ in H which

17



have two common vertices must satisfy that w and w′ belong to the same part in P. Observe
also that in all triples in T of the form XXY we have Y ∈ {A,B,C,D,E}.

In every copy of F1 in H, because of the pair of edges abc and abd, the vertices c and d
belong to the same part of P, which forces e ∈ {A,B,C,D,E}. Meanwhile, in every copy of F2

in H, because of the pair of edges fgh and fgi we have that h and i belong to the same part of
P. This part determines the partition class of j and k through the edges hij and hik, which in
turn determine the class of ℓ through jkℓ, which finally determines the class of e through ehℓ.
Checking all twelve classes for h and i, we find that for none of them the resulting vertex e is in
{A,B,C,D,E}, meaning that there is no copy of F in H.

We remark that vertex transitive hypergraphs with linear minimum codegree will contain
F : there will be copies of F1 and F2, of which we can find isomorphisms in which the vertex e
coincides.

5.2 Equivalence of Conjectures 1.6 and 1.7

In this section, we prove Theorem 1.8, that is, Conjectures 1.6 and 1.7 are equivalent. By
Theorem 1.5, to prove the equivalence, it suffices to show that any 3-graph F with πco(F ) =
0 is layered assuming that this holds for linear 3-graphs. For this purpose, we will use the
following operation to transform a 3-graph into a linear 3-graph while preserving the (non)layered
structure.

For any 3-graph F and any vertex v ∈ V (F ), let Fv be the 3-graph obtained by the following
operation.

• Delete vertex v, and for each uw ∈ LF (v), add a new vertex vuw and a new edge uwvuw.

• Add three new vertices xv, yv, zv, and then for each uw ∈ LF (v), add three more new
vertices xuw, yuw, zuw and the following six new edges

xvvuwxuw, xvyuwzuw, yvvuwyuw, yvxuwzuw, zvvuwzuw, zvxuwyuw,

which is a Fano plane on {xv, yv, zv, vuw, xuw, yuw, zuw} with one edge xvyvzv removed and
is denoted by Fuw.

Denote by Lv = {xv, yv, zv} ∪ {vuw, xuw, yuw, zuw : uw ∈ LF (v)} the collection of all these new
vertices. Note that for each u ∈ Lv, its link graph is a matching. We say that the vertex v is
linearized.

Given a 3-graph F and a function f : V (F ) → N, we say that f is a semi-layered function
of F if it satisfies conditions (A1) and (A2), and define the cardinality of f to be the size of
its range. Furthermore, a semi-layered function is minimum if it has the minimum cardinality
over all semi-layered functions. For the sake of convenience, for any edge e = uvw ∈ E(F ), we
use f(e) to denote the multiset {f(u), f(v), f(w)}.

Proposition 5.1. Every minimum semi-layered function is a layered function.

Proof. Let F be a 3-graph and f be a minimum semi-layered function of F . Suppose on the
contrary that f is not a layered function of F . Then there are two edges e, e′ ∈ E(F ) satisfying
that |f(e) ∩ f(e′)| = 2. Therefore, max f(e) ̸= max f(e′) holds as otherwise f(e) = f(e′) would
follow from condition (A2). Let p = max f(e), t = max f(e′) and q be the unique element in
f(e′) \ f(e). Without loss of generality, we may assume that p > t ≥ q. For each v ∈ V (F ), let

g(v) =

{
f(v), if f(v) ̸= p;

q, if f(v) = p.

Note that g(e) = g(e′) = f(e′), and it is not hard to see that
(⋆) either max g(ê) = max f(ê) or max g(ê) = t for any edge ê with p ∈ f(ê).
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We show that g is also a semi-layered function of F , which leads to a contradiction as the
cardinality of g is smaller than the one of f .

Let e0 be an edge in E(F ) with max f(e0) = ℓ. If ℓ > p, then g(e0) has a unique maximum
element because p > q and f satisfies (A1). If ℓ < p, then g(e0) = f(e0) as p /∈ f(e0), implying
that g(e0) also has a unique maximum element. If ℓ = p, then f(e0) = f(e) by condition (A2).
Therefore, g(e0) = g(e) = g(e′) = f(e′), which implies that g(e0) has a unique maximum element
as f(e′) does. So g satisfies condition (A1).

Let e1, e2 be two edges with max g(e1) = max g(e2) = ℓ. If ℓ ̸= t, then by (⋆) we must have
max f(e1) = max f(e2) = ℓ, implying that f(e1) = f(e2). Therefore, g(e1) = g(e2) follows. If
ℓ = t, then for each i ∈ {1, 2}, either max f(ei) = t or max f(ei) = p , which implies that either
f(ei) = f(e) or f(ei) = f(e′). Therefore, g(e1) = g(e2) follows from that g(ei) ∈ {g(e), g(e′)}
for each i ∈ {1, 2} and g(e) = g(e′). So g satisfies condition (A2).

A straightforward corollary of Proposition 5.1 is that a 3-graph F is layered if and only if F
has a semi-layered function. Now we show that linearizing a vertex preserves the (non)layered
structure.

Proposition 5.2. For any 3-graph F and v ∈ V (F ), F is layered if and only if Fv is layered.

Proof. Suppose that F is layered, and let f be a layered function of F . Now we define a function
g : V (Fv) → N by setting

g(u) =


f(u), if u ∈ V (Fv) \ Lv;

f(v), if u ∈ Lv \ {xv, yv, zv};
N, if u ∈ {xv, yv, zv},

where N = max{f(u) : u ∈ V (F )}+ 1. Next we prove that Fv is layered by showing that g is a
semi-layered function of Fv.

One can easily verify that g satisfies condition (A1). Now we show that g also satisfies
condition (A2). Let e1, e2 ∈ E(Fv) be any two edges with max g(e1) = max g(e2) = M . If
M = N , then e1, e2 ⊆ Lv and g(e1) = g(e2) = {f(v), f(v), N}. If M ̸= N , then for any
i ∈ {1, 2}, either ei ∩ Lv = ∅ or ei = uwvuw for some uw ∈ LF (v). By the definition of g,
it follows that either g(ei) = f(ei) or g(ei) = f(uwv) for some uw ∈ LF (v), implying that
g(e1) = g(e2) as f satisfies condition (A2). Therefore, g satisfies condition (A2).

Reversely, suppose that Fv is layered and g : V (Fv) → N is a layered function of Fv. For
each uw ∈ LF (v), since Fuw is a Fano plane with one edge removed, it is not hard to verify that
the layered function g must satisfy that

g(xv) = g(yv) = g(zv) > g(vuw) = g(xuw) = g(yuw) = g(zuw).

Furthermore, by condition (A2), we know that g(v1) = g(v2) for any two vertices v1, v2 ∈
Lv \ {xv, yv, zv}. Let v̂ be a vertex in Lv \ {xv, yv, zv}. Define a new function f : V (F ) → N by
setting

f(u) =

{
g(v̂), if u = v;

g(u), if u ∈ V (F ) \ {v}.

Note that for any edge uwv ∈ E(F ),

f(uwv) = {g(u), g(w), g(v̂)} = {g(u), g(w), g(vuw)} = g(uwvuw).

Combining with that f(e) = g(e) for any e ∈ E(F ) not containing v, it clearly holds that f is a
semi-layered function of F , and thus F is layered.

The following proposition shows that linearizing a vertex of any 3-graph will not increase its
codegree Turán density.
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Proposition 5.3. For any 3-graph F and v ∈ V (F ), πco(Fv) ≤ πco(F ).

Proof. Choose parameters satisfying 1/n ≪ 1/t ≪ ε, 1/|V (F )|. Let F (v, t) be the 3-graph
obtained from F by blowing up the vertex v into an independent set of size t, then πco(F (v, t)) =
πco(F ). Let H be any n-vertex 3-graph with δco(H) ≥ (πco(F )+ε)n. Then F (v, t) is a subgraph
of H. Let U1 be the vertex set corresponding to the blow-up of v and U2 = V (H) \ V (F (v, t)).
Let H ′ be the (2, 1)-type subgraph of H with V (H ′) = U1 ∪U2 and E(H ′) = {e ∈ H : |e∩U1| =
2, |e ∩ U2| = 1}. Therefore, dH′(u1, u2) ≥ (πco(F ) + ε/2)n for any two vertices u1, u2 ∈ U1.
Further, note that Fv[Lv] is a (2, 1)-type linear 3-graph with partition {vuw, xuw, yuw, zuw :
uw ∈ LF (v)}∪{xv, yv, zv}. We conclude that Fv[Lv] is a subgraph of H ′ by Lemma 4.8. Hence,
Fv is a subgraph of H, implying that πco(Fv) ≤ πco(F ).

Proof of Theorem 1.8. Note that, by Theorem 1.5, we only need to show that any 3-graph F
with πco(F ) = 0 is layered assuming that this is true for all linear 3-graphs.

Let F be a 3-graph with πco(F ) = 0, and L(F ) be a linear 3-graph obtained from F by
linearizing, one by one, all vertices whose link graphs are not matchings. Then it follows from
Proposition 5.3 that πco(L(F )) = 0. Suppose that Conjecture 1.7 is true, then L(F ) is layered,
which implies that F is also layered by Proposition 5.2.

6 Concluding Remarks

In this paper, we studied Problem 1.1 for 3-graphs and proved that any layered 3-graph F with
π (F ) = 0 has πco(F ) = 0. On the other hand, we proved that π (F ) = 0 is a necessary
condition and reduced the problem determining whether the layered structure is necessary to
the linear 3-graph case. One explanation for the difficulty of Problem 1.1 is that the codegree
Turán density can be arbitrarily close to zero. Towards Conjecture 1.7, we wonder if zero is also
an accumulation point for the codegree Turán density for linear 3-graphs.

Question 6.1. For any ε > 0, is there a linear 3-graph F with 0 < πco(F ) < ε?

Similar as codegree Turán density, one can define the s-degree Turán density, which was first
mentioned by Keevash [16] and formally introduced by Lo and Markström [20]. Let H be an
n-vertex k-graph. For 1 ≤ s ≤ k− 1, the minimum s-degree, denoted by δs(H), is the minimum
of dH(S) over all s-subsets S of V (H). Given a family F of k-graphs, the s-degree Turán number
exks(n,F) is the largest δs(H) over all n-vertex k-graphs containing none of the members in F .
Similarly, the s-degree Turán density of F is defined to be

πk
s (F) = lim

n→∞

exks(n,F)(
n

k−s

) .

Lo and Markström [20] showed that this limit always exists and πk
s (F ) also possesses the super-

saturation property for any k-graph F .
Let Π̃k

s = {πk
s (F) : F is a family of k-graphs} and Πk

s = {πk
s (F ) : F is a k-graph}. Mubayi

and Zhao [22] proved that Π̃k
s is dense in [0, 1) for k ≥ 3 and s = k − 1. Lo and Markström [20]

later extended this result to all 2 ≤ s ≤ k− 1 (note that πk
1 (F) = π(F), and therefore Π̃k

1 is not
dense in [0, 1)). But the same question for Πk

s still remains widely open.

Question 6.2. For k ≥ 3 and 2 ≤ s ≤ k − 1, is Πk
s dense in [0, 1)?

As a positive evidence, Piga and Schülke [25] proved that zero is an accumulation point of
Πk

k−1 for k ≥ 3. So it would be very interesting to figure out whether zero is also an accumulation

point of Πk
s with 2 ≤ s ≤ k − 2.

Question 6.3. For k ≥ 4 and 2 ≤ s ≤ k − 2, is zero an accumulation point of Πk
s?
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Generalizing Problem 1.1, one can consider the characterization problem for all 2 ≤ s ≤ k−1,
and it would be interesting if our results can be extended to these general cases.

Problem 6.4. For k ≥ 3 and 2 ≤ s ≤ k − 1, characterize all k-graphs F with πk
s (F ) = 0.
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[9] P. Erdős and V. T. Sós. On Ramsey–Turán type theorems for hypergraphs. Combinatorica,
2(3):289–295, 1982.

[10] V. Falgas-Ravry and A. Lo. Subgraphs with large minimum ℓ-degree in hypergraphs where
almost all ℓ-degrees are large. Electronic Journal of Combinatorics, 25(2):Paper 18, 1–7,
2018.

[11] V. Falgas-Ravry, E. Marchant, O. Pikhurko, and E. R. Vaughan. The codegree threshold
for 3-graphs with independent neighborhoods. SIAM Journal on Discrete Mathematics,
29(3):1504–1539, 2015.

[12] V. Falgas-Ravry, O. Pikhurko, E. Vaughan, and J. Volec. The codegree threshold of K−
4 .

Journal of the London Mathematical Society (2), 107:1660–1691, 2023.

[13] F. Garbe, D. Král’, and A. Lamaison. Hypergraphs with minimum positive uniform Turán
density. Israel Journal of Mathematics, doi:10.1007/s11856-023-2554-0, 2023.

[14] R. Glebov, D. Král’, and J. Volec. A problem of Erdős and Sós on 3-graphs. Israel Journal
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