Lecture 19

- At of KruskalKatona
- VC-dim

Recall $\quad F \in\binom{[n]}{k}, \underset{\text { shadow }}{\partial F \subseteq\binom{[n]}{k-1} \text { all }(k-1) \text {-sets (yang in }} \underset{\text { some } F \in F}{ }$
Kruskal-Katuna: given $|f|$, min. $|\partial f|$
The $\forall n_{k}>n_{k-1}>\cdots>n_{s} \geqslant s \geqslant 1, m=\binom{n_{k}}{k}+\binom{n_{k-1}}{k-1}+\cdots+\binom{n_{s}}{s}$

Idea: shafting \Rightarrow some stricture + Induction

- Shifting for $2 \leqslant i \leqslant n$, for $F \in F$ define

$$
S_{i}(F)= \begin{cases}F \backslash\{i\} \cup\{1\} & \text { if } i \in F \& \mid \notin F \text { and } \\ F & F(\{i\} \cup\{,\} \notin F\end{cases}
$$

Write $S_{i}(F)=\left\{S_{i}(F): F \in \mathcal{F}\right\}$
Call F compressed if $S_{i}(F)=F$ for all $2 \leqslant i \leqslant n$
Exes Prove that it is a finite process to shift any fam F to a compressed one.

Example $\quad G=\{134,135,234,245\}$

$$
S_{5}(q)=\{134,135,234,124\}
$$

Rok Initial segments of colex order are compressed

But not every compressed fam. is initial sega. of colex.
Example $k=2 \quad\{13,15,17,19\}$ compressed Leave the following propositions as exercises.
Prop_ $\forall G \subseteq\binom{[n]}{k}, \forall 2 \leqslant i \leqslant n$, map $G \rightarrow \operatorname{Si}(F)$ is injective. In particular, $\quad|F|=\left|S_{i}(F)\right|$

- Shifting does not increase the size of shadow

Prop $\forall f \in\binom{[n]}{k} \quad \forall z \leq i \leq n$,

$$
\Rightarrow \quad \partial\left(S_{i}(F)\right) \subseteq S_{i}(\partial F) \quad \text { previous poop }
$$

In particular $\left|\partial\left(S_{i}(f)\right)\right| \leqslant\left|S_{i}(\partial f)\right| \stackrel{\downarrow}{=}|\partial \mathcal{F}|$

- Given $f \leqslant\binom{[n]}{k}, \quad f=f_{1} \cup f_{1}^{c}$ where

$$
g_{1}=\{F \in F: \mid \in F\}, \quad F_{1}^{c}=\{F \in F: \mid \notin F\}
$$

remove 1 from all sets \because in F_{1}^{c} is on ground set (n)]ir $\}$ (k-1)-unif c in F_{1} gave for liduction. $\mathcal{L}_{1}=\left\{F \backslash\{1\}: F \in \mathcal{F}_{1}\right\}$: link of element 1.

Prop (v) If g is compressed, then
(i) $\partial \mathcal{F}_{1}^{c} \subseteq \mathcal{L}_{1}$, and
(ii) $\partial G=\mathcal{L}_{1} \cup\left\{E \cup\{1\}: E \in \partial \mathcal{L}_{1}\right\}$ and so $|\partial f|=\left|\mathcal{L}_{1}\right|+\left|\partial \mathcal{L}_{1}\right|$

Pf (Kruskal - Katona) Double induction on uni k
then on the size of the fam. m
Base $k=1$ trivial as shadow of any 1 -unit fam is
Assume $k \geqslant 2$ and induct on $m=|f|$ $\{\phi\}$.

$$
m=1=\binom{k}{k} \Rightarrow f \text { has one set, shadow }=\binom{k}{k-1}
$$

Assume $m \geqslant 2$. We may assume f is compressed for otherwise we con keep shirting the foo while keeping its cardinality \& not increasing its shadow size.
Claim $\left|\mathcal{L}_{1}\right| \geqslant\binom{ n_{k}-1}{k-1}+\binom{n_{k-1}-1}{k-2}+\cdots+\binom{n_{s}-1}{s-1}$
Claim \Rightarrow Inductive step (O)
By $\operatorname{Prop}(\vartheta)$ (ii) $|\partial \sigma|=\left|\mathcal{L}_{1}\right|+\left|\partial_{1}\right|$

$$
\begin{aligned}
& \quad \geqslant\left(\binom{n_{k}-1}{k-1}+\binom{n_{k-1}-1}{k-2}+\cdots+\binom{n_{s}-1}{s-1}\right)+ \\
& \text { IN. }{ }^{(k-1)-n_{n} f}\left(\binom{n_{k}-1}{k-2}+\binom{n_{k-1}-1}{k-3}+\cdots+\binom{n_{s}-1}{s-2}\right) \\
& \quad=\binom{n_{k}}{k-1}+\cdots+\binom{n_{s}}{s-1}
\end{aligned}
$$

[Pf of Claim] Suppose not true!

$$
\begin{aligned}
\Rightarrow\left|f_{1}\right| & =|f|-\left|f_{1}\right|=|f|-\left|\alpha_{1}\right| \\
& >\left(\binom{n_{k}}{k}+\cdots+\binom{n_{s}}{s}\right)-\left(\binom{n_{k}-1}{k-1}+\cdots+\binom{n_{s}-1}{s-1}\right) \\
& \left.=\binom{n_{k}-1}{k}+\cdots+\binom{n_{s}-1}{s} \cdots(\not)\right)
\end{aligned}
$$

Now, f is compressed $\Rightarrow\left|f_{1}\right|<|f|$
IH on $\left|f_{1}^{c}\right| \Rightarrow$

$$
\begin{gather*}
\left|\mathcal{L}_{1}\right| \geqslant \underset{\sim}{\sim}\left|\partial g_{1}^{c}\right| \geqslant\binom{ n_{k}-1}{k-1}+\cdots+\binom{n_{s}-1}{s-1} \\
\operatorname{Pop}(\eta)(i)
\end{gather*}
$$

Issue here: $n_{s}=s$ possible, then $(*)$ is not of the form in hypo: of $K-K$ Fix it Ever

Application $\quad K-K \Rightarrow$ Erdö's-Ko-Rado $\quad \begin{aligned} & \text { ant. } k-f a n \\ & \text { size } \leq\binom{ n-1}{k-1}\end{aligned}$
$[$ Baby $K-K]|\sigma| \geq\binom{ n}{k} \Rightarrow|\partial f| \geqslant\binom{ n}{k-1}$
Idea $\quad \bar{F}=\{[n] \backslash F ; F \in \mathcal{F}\}$
(山) $\forall F \in F, \overline{F^{\prime \prime} \in \bar{F}}$ IMPOSSIBLE: $F \subseteq \overline{F^{\prime}}$

If $|\vec{F}|=|\vec{F}|$ large

\Rightarrow shadow of F large by $K-K$
By (山) shadow of \bar{f} is disjoint from \vec{f}
Pf: Suppose $|f|>\binom{n-1}{k-1}$

$$
\Rightarrow I \text { small } \sum \text {. }
$$

$$
\begin{aligned}
& |\bar{f}|=|F|>\binom{n-1}{k-1}=\binom{n-1}{n-k} \\
& (n-k) \text {-unif }
\end{aligned}
$$

Baby $K-k \Rightarrow \quad|\partial \bar{F}| \geqslant\binom{ n-1}{n-k-1}$

$$
\begin{aligned}
& |\partial(\partial \bar{F})| \geqslant\binom{ n-1}{n-k-2} \\
\Rightarrow \quad & \quad\left|\partial^{(n-2 k)} \bar{f}\right| \geqslant\binom{ n-1}{k}
\end{aligned}
$$

$B y\left(\left({ }^{(}\right)\right) \quad \partial^{(n-2 k)} \bar{F} \cap f=\phi$

$$
\Rightarrow|F| \leqslant\binom{ n}{k}-\binom{n-1}{k}=\binom{n-1}{k-1}
$$

$S V C$ dim \& Saver - Shelah lemma
How can we measure in a sense the complexity of a set system?

Intuitively, $f \subset 2^{[n]}$ is complex if it 'contain a large copy of a cube $2^{[r]}$ ' for large r.
In other wards, we want to look at how numbers of F intersect some subset of the ground set.
\# distinct intersection limited \rightarrow simple.
Given $-11 \rightarrow$ complex.
Def $f \subseteq 2^{[n],} S \subseteq[n]$, trace of f on S

$$
\left.G\right|_{s}=\{F \cap s: F \in F\}
$$

We say a set S is shattered by \mathcal{F} if

$$
\left.G\right|_{S}=2^{S}
$$

Def The $V C$-dimension of $F \subseteq 2^{X}$ is the maximum size of a set $S \subseteq X$ shattered by F. C could be infinite set

$$
V C-d_{\text {in }}=\infty \quad \text { if } \exists \text { arbitrarily large shattered set. }
$$

Example $\quad X=\mathbb{R}, F=$ collection of all closed intervals $[a, b]$

$$
V C-\operatorname{dim} \text { of } g=2
$$

