Lecture 19

• Pf of Kruskel-Katona

VC-dim

Recall • $F \subseteq \begin{pmatrix} Ch \\ k \end{pmatrix}$ $\partial F \subseteq \begin{pmatrix} Cn \\ k-1 \end{pmatrix}$ all $(k-1)$ -sets lying in shadow some $F \in F$
Kruskal - Katuna: given [J], min. [2]
$\frac{1}{2} \operatorname{hm} \Psi = \binom{N_{k+1}}{k} + \frac{N_{k+1}}{k} + \frac{N_{k+1}}{k} + \binom{N_{k+1}}{k} + \binom{N_{k}}{k} + $
$\begin{array}{c} \forall F & k-set \ fam. \ w. \\ \end{array} \qquad \qquad$
Idea : shifting => some structure + Induction
• Shifting for $2 \le i \le n$, for $F \in F$ define $S_i(F) = \begin{cases} F \setminus \{i\} \cup \{i\} \} & \text{if } i \in F \& \notin F \text{ and} \\ F \setminus \{i\} \cup \{i\} \notin F \end{cases}$ $F \setminus \{i\} \cup \{i\} \notin F$
W_{i} ite $S_{i}(\mathcal{F}) = \{S_{i}(\mathcal{F}) : \mathcal{F} \in \mathcal{F}\}$
Call F compressed if $S_i(F) = F$ for all $2 \le i \le n$
Exer Prove that it is a finite process to shift any fam. I to a compressed one.
Example $f = \{134, 135, 234, 245\}$
$S_5(F) = \{134, 135, 234, 124\}$
Rmk Initial segments of colex order are compressed

But not every compressed fam. is initial seg. of colex. Example k=2 {13, 15, 17, 19} compressed Leave the following propositions as exercises $Prop_{+} \forall F \subseteq \binom{Cn}{k}, \forall z \leq i \leq n, map f \rightarrow S_{i}(F)$ is injective in particular, $|F| = |S_i(F)|$. Shuffing does not increase the size of shadow Frop UF FE (En) VZECEN, prenous prop. $\implies \partial \left(S_{i}(\mathcal{F}) \right) \subseteq S_{i}(\partial \mathcal{F})$ In particular $\left| \partial \left(S_i(f) \right) \right| \leq \left| S_i(\partial f) \right| = \left| \partial f \right|$ Given $J \in \binom{\lfloor n \rfloor}{k}$, $J = J \cup J^{c}_{1}$ where $f_i = \{F \in F : I \in F\}, \quad f_i^c = \{F \in F : I \notin F\}$ remove (from all sets () Fi is on ground set (n] \313 (k-i)-unif c in Fi good for induction $L_1 = \{F \setminus \{i\} : F \in F_1\}$: link of element 1.

 $\sum_{k=1}^{n} \left(\begin{pmatrix} N_{k} - 1 \\ k - 1 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\ k - 2 \end{pmatrix} \right)^{k} + \left(\begin{pmatrix} N_{k-1} - 1 \\$ $L_{1} (k-1) - unf$ $IH_{k-2} + \binom{N_{k-1}}{k-3} + \dots + \binom{N_{s-1}}{s-2}$ $= \left(\begin{array}{c} n_{k} \\ k \\ k \end{array} \right) + \left(\begin{array}{c} n_{$ [Pf of Claim] Suppose not true $> \left(\begin{pmatrix} N_{k} \\ N_{k} \end{pmatrix} + \dots + \begin{pmatrix} N_{s} \\ S \end{pmatrix} \right) + \dots + \begin{pmatrix} N_{s} \\ N_{s} \end{pmatrix} \right)$ $= \left(\begin{pmatrix} M_{k} - I \\ K \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left(\begin{pmatrix} M_{s} - I \\ S \end{pmatrix} \right) + \cdots + \left($ Now, f is compressed => $|f_i^c| < |f|$ IH $|F_i| =>$ $|\mathcal{L}_{1}| \geq |\partial \mathcal{F}_{1}^{c}| \geq \binom{n_{k}-1}{k-1} + \dots + \binom{n_{s}-1}{s-1}$ $\wedge Prop(\mathfrak{V})(i)$ Issue here: $N_s = s$ possible, then (X) is not of the form in hypo. of K-K. (Fix it Exer)

Int. K-fam K-K => Erdős-Ko-Rado Application Size $\leq \binom{N-1}{k-1}$ $\int \mathcal{F}\left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{2} \left(\begin{pmatrix} n \\ k \end{pmatrix} \right) = \int \left(\frac{2}{$ (Barby K-K) $\overline{f} = \int [n] \setminus F ; F \in \overline{f}$ Idea (b) V FEF, F'EF IMPOSSIBLE: FEFI EnjelF', Fref m (F) F/ If |F|=|F| large F'NF= \$ disj \$ => shadow of F large by K-K By ((5) shadow of F is disjoint from F => F Small Suppose $(J=1) > \binom{N-1}{K-1}$ pf. $\left| \vec{f} \right| = \left| \vec{f} \right| > \left(\begin{array}{c} n-1 \\ k-1 \end{array} \right) = \left(\begin{array}{c} n-1 \\ n-k \end{array} \right)$ (n-k)-unif h-k F J d k F Baby $K-K = \frac{1}{2F} = \frac{1}{2F} = \frac{1}{n-k}$ $\left|\partial\left(\partial\widehat{f}\right)\right| \geqslant \binom{n-1}{n-k-2}$ \Rightarrow \mathcal{B} \mathcal{B} (\mathcal{C})

 $\Rightarrow |f| \leq \binom{n}{k} - \binom{n-1}{k} = \binom{k-1}{k-1}$ SVC dim & Saver-Shelah lemma in a sense the complexity How can we measure of a set system? Intuitively, JEZ [n] is complex if it contain a large copy of a cube 2[r] for large r. In other words, we want to look at how members of F intersect some subset of the ground set. # distinct intersection limited -> simple monny -> complex. Def J C 2^[n] SE[n] trace of F on S Fls = { FNS : FEF { We say a set S is shattered by F if Fls=25

Def The	VC - dimension	of $f \in 2^{\times}$ is
the maxi	imum size of a	set $S \subseteq X$ shattened
by F.	· · · · · · · · · · · · · · ·	C could be lifinite set
VC-din	n = 0 if z	arbitrarily large shortlered set.
Example	X = R, J =	collection of all closed intervals [a, 6]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-dim of f =	
· ·		
· ·		. .