Spring 2024 Extremal Combinatorics
 Homework 3

Hong Liu

Due May 2

Please submit 6 out of 8 problems for grading. You have to choose $\mathbf{3}$ problems from No. 1, 2, 3, 4 and 3 problems from No. 5, 6, 7, 8.

1. Given n points and n lines in the Euclidean plane (no three points are collinear), show that the number of point-line pairs such that the point lie on the line is upper bounded by $O\left(n^{3 / 2}\right)$.
2. Let G be an n-vertex graph with $\varepsilon\binom{n}{2}$ edges. Show that there exists a biclique $K_{s, s}$ in G with $s=c \log n$, where $c=c(\varepsilon)>0$.
3. A double-pyramid of size k is a 3 -uniform hypergraph consisting of vertices $x, y, z_{1}, \ldots, z_{k}$ with edge set $\left\{x z_{i} z_{i+1}, y z_{i} z_{i+1}\right\}_{i \in \mathbb{Z} / k \mathbb{Z}}$. Let \mathcal{P} be the family of double-pyramids of all sizes. Prove that

$$
\operatorname{ex}(n, \mathcal{P})=O\left(n^{5 / 2}\right)
$$

4. Show that there exists a constant C such that every graph with average degree at least C contains two cycles of consecutive even lengths.
5. Let h be a positive integer with $h \leq \frac{n}{2}$. Show that if \mathcal{A} is an antichain of subsets of an n-set with $|A| \leq h$ for any $A \in \mathcal{A}$, then $|\mathcal{A}| \leq\binom{ n}{h}$.
6. (1) Assume that $k>\frac{n+1}{2}$. Let H be a collection of k-subsets of an n-set S. Let

$$
\Delta(H)=\{D \subseteq S:|D|=k-1 \text { and } D \subseteq A \text { for some } A \in H\}
$$

Prove that $|\Delta(H)| \geq|H|$
(2) Use (1) to give a new proof of Sperner's Theorem.
7. Let X be a set of 100 elements. Find the smallest possible n with the following property:

- For any sequence of subsets $A_{1}, A_{2}, \ldots, A_{n}$ of X, there exist $1 \leq i<j<k \leq n$ such that

$$
A_{i} \subseteq A_{j} \subseteq A_{k} \quad \text { or } \quad A_{i} \supseteq A_{j} \supseteq A_{k}
$$

8. Let $k<n$ be two positive integers. Let $f(n, k)$ denote the largest value of m for which it is possible to find m chains of $k+1$ distinct subsets of an n-set S such that no member of any chain is a subset of a member of any other chain. Determine $f(n, k)$.
