-

Lecture 9
Previously : $\quad C_{4}, K_{s, t}(K S T), C_{2 l}$
\oint Regularization
A lemma of Erdós-Simonovits allows us to work with almost regular graphs for bipartite Turán problem.
A graph G is K-almost-regular if

$$
\Delta(G) \leq K \cdot \delta(G)
$$

Lem Let $0<\varepsilon<1, c>0$ and n be sufficiently large.
Let G be an n-ux graph with $e(G) \geqslant c \cdot n^{1+\varepsilon}$

$$
\begin{aligned}
\Rightarrow & \exists G^{\prime} \subseteq G \text { on } m \text { us, } m \geqslant n^{\frac{\varepsilon-\varepsilon^{2}}{4+4 \varepsilon}} \text { and } \\
& \cdot e\left(G^{\prime}\right) \geqslant \frac{2 c}{5} m^{1+\varepsilon}, \\
& \cdot G^{\prime} \text { is } K \text {-almost-reg, } K=20.2^{\frac{1}{\varepsilon^{2}+1}}
\end{aligned}
$$

Pf (Sketch) Ever \Rightarrow details
Let $t=K / 20=2^{1 / \xi^{2}+1}$
Partition $V(G)=V_{1} \cup \ldots \cup V_{2 t}$ of equal size, where V_{1} contains the highest degree uss

Case $1 \leqslant$ half edges incident to V_{i}

- delete V/
repeatly delete uss of deg $<\frac{c}{10} n^{\varepsilon}$

Case $2 \geqslant$ half edges incident to V_{1}
$\Rightarrow \exists V_{i}$ st.

$$
e_{G}\left(V_{1}, V_{i}\right) \geqslant \frac{1}{4 t} e(G)
$$

Work in $G\left[V_{1} \cup V_{i}\right] Q_{1}$ it can be shown that this process mist terminates a large graph at case 1 for

Recall $K S T: \quad \operatorname{ex}\left(n, K_{r, t}\right)=O\left(n^{2-1 / r}\right)$
Thu (Furredi, Alon-Wrivelevich-Sudakov) Let H be a bip. gr w./ bipartition $A \cup B$ where each ox in A has deg $\leq r$ in $B \Rightarrow \operatorname{ex}(n, H)=O\left(n^{2-1 / r}\right)$

Rale: extends KST.

Def In a bip graph w./ UuW. a subset $R \subset W$ (or $R \subset U$) is Gelled (r, h)-rich if $\forall r$-set $R^{\prime} \subset R$
 has $\geqslant h$ common neighbors

Prop 1 Given a bio gr G w. bip. $U \cup W$, if W contains an (r, h)-rich set of size $\geqslant h \Rightarrow G$ contains any
 h-ix bop. H w. max deg r on one side.
Pf: Embed $B \xrightarrow{\varphi} R$ rich set

- $\forall a \in A$, map a to an un-used x in $N_{G}\left(\varphi\left(N_{H}(a)\right)\right)$

The next prop. finds a rich subset in an asymmetric bit: gr wi barge degree.

Prop 2 let H bip on $A \cup B$, h us, us in A deg $\leqslant r$ Let G bop on $U \cup W,\left\{\begin{array}{l}\text { us in } U \text { have deg } \geqslant h \\ |U|>h\binom{|w|}{r}\end{array}\right.$
$\Rightarrow W$ contains an (r, h)-rich set of size h In particular, $H \subseteq G$.

Pf: Shall find such rich set in a neighbihd of a $v x$ in U.

- Take a maximal partial map

$$
\varphi: U \rightarrow\binom{W}{r} \text { st. }
$$

(think of us in U as colors assigned to r-subsets)

- if $\varphi(u)=R \in\binom{W}{r}$, then $R \subseteq N(u)$,
$\cdots \quad \forall R \in\binom{W}{r}, \quad \varphi^{-1}(R)$ has size $\leq h$
(ie we do not assign more then h colors to any R)
- φ is injective ice. $|\varphi(u)| \leq 1 \quad \forall u \in U$:

As $\left(u \left\lvert\,>h\binom{|w|}{r} \Rightarrow a \quad \infty \quad b \in U \quad\right.\right.$ which is not assigned to any r-set in W Claim An $h \cdot \operatorname{sed}_{a}{ }_{a}^{\text {in }} N(b)$ is

$$
(r, h) \text {-rich. }
$$

pf NTS $\forall r$-set $T \subseteq B$ has $\geqslant h$ common neighbors
Note $\left|\varphi^{-1}(T)\right|=h$
we have h colors assigned to T.
$U W$
 for ow: letting $\varphi(b)=T$ maxinality of φ.

Tho 3 (Random zooming, Gil-fernandez - Hyde-Liu - Pikhunko- Wu)

Let $d \geqslant \max \{40,2 h\}$ and G be a bip gr on $U \cup W$ st. every $v x$ in U has deg $\geqslant d$ in W. If

$$
(\omega) \cdots \frac{1}{2|w|}\left(\frac{|U|}{4 h}\right)^{1 / r} \frac{d}{2} \geqslant \max \{20, h\}
$$

$\Rightarrow G$ contains any $h-v$ dip. H
 $w . /$ max dey r on one part:

Ever: $T h m 3 \Rightarrow F-A-K-S$.
Idea: By Prop 2, suffices to find $U^{\prime} \subset U, w^{\prime} \subset W$ inducing asymmetric bip. w/ large deg on U^{\prime} side To find such $U^{\prime} \& W^{\prime}$, we randomly 200 m into a subset $W^{\prime} \subset W$

Pf: Let $p=\frac{1}{2|w|}\left(\frac{|U|}{4 h}\right)^{1 / r}$
If $|U|>4 h(2|w|)^{r}$, replace it w) a subset of size exactly $4 h(2|\omega|)^{r} \Rightarrow(D)$ holds \& $p \leq 1$

- Let $W^{\prime} \subset W$ be a P-random subset of W where each x in W is chosen $w /$ prob. P cindep. of others.
- For $u \in U, X_{u}:=d_{G}\left(u, W^{\prime}\right)$

$$
=\sum_{\omega \in N(u)} \mathbb{1}_{\left\{\omega \in W^{\prime}\right\}}
$$

Sum of indep. Bernoulli riv.

$$
\mathbb{E} X_{u}=\rho \cdot d(u) \geqslant p \cdot d
$$

$\left\{\begin{array}{l}\text { low tail Chernoff } \\ \operatorname{pd} / 12 \geqslant 2 \Rightarrow\end{array}\right.$

$$
\operatorname{Pr}\left(X_{n}<P d / 2\right) \leq e^{-\frac{P d}{12}} \leq 1 / 4
$$

Let $U^{\prime}=\left\{u \in U: X_{u} \geqslant p d / 2\right\}$
Claim $\operatorname{Pr}\left(\left|W^{\prime}\right|>2 p|W|\right)+\operatorname{Pr}\left(\left|U^{\prime}\right|<\frac{|U|}{4}\right)<1$

- Claim \Rightarrow with positive probability none of these two events happen. That is:

$$
\left\{\begin{array}{l}
\left|w^{\prime}\right| \leqslant 2 p|w| \\
\left|u^{\prime}\right| \geqslant \left\lvert\, u \frac{1}{4}\right.
\end{array}\right.
$$

$$
t(B) \Rightarrow\left|u^{\prime}\right|>h\binom{\left|w^{\prime}\right|}{r}
$$

- Choice of $U^{\prime} \Rightarrow$ deg to $W^{\prime} \geqslant p d / 2 \geqslant h$

Pf of Claim (i) $\operatorname{Pr}\left(\left|U^{\prime}\right|<|U| / 4\right)=2 \leqslant 1 / 2$
Suppose $q>1 / 2$

$$
\begin{array}{rlr}
\mathbb{E}\left|u^{\prime}\right| & =|u| \cdot \operatorname{Pr}\left(X_{u} \geqslant p d / 2\right) & \operatorname{Pr}\left(X_{u}<\frac{P d / 2}{}\right) \leq e^{-P / r} \leqslant \frac{1 / 4}{4} \\
& \geqslant \frac{3|u|}{4} \\
\mathbb{E}\left|u^{\prime}\right| & \leq q \cdot \frac{|u|}{4}+(1-q)|u| \leq \frac{5|u|}{8} \text { t }
\end{array}
$$

(ii) $\operatorname{Pr}\left(\left|w^{\prime}\right|>2 p|w|\right) \leqslant 1 / 4$

As $|w| \geqslant d \Rightarrow \mathbb{E}\left|w^{\prime}\right|=p|w| \geqslant p d \geqslant 40$
upper tail Cherneff \Rightarrow

$$
\begin{aligned}
& \text { Cherneff } \Rightarrow \\
& \operatorname{Pr}\left(\left|w^{\prime}\right|>2 p|w|\right) \leq e^{-\frac{p|w|}{3}} \leq 1 / 4
\end{aligned}
$$

