

Lecture 9 C_{y} , $K_{s,t}$ (KS7), C_{2l} Previously S Regularization A lemma of Erdős-Simonovits allows us to work with almost regular graphs for bipartite Turán problem. A graph G B K-almost-regular if $\Delta(G) \leq K S(G)$ Len Let OKEKI, C>O and n be sufficiently large Let G be an n-ux graph with e(G) > c·n^{1+E} \implies $\exists G' \subseteq G$ on $m \cup s$, $m \ge N^{\frac{E-E'}{4+4E}}$ and • $e(G') \geq \frac{2c}{5} m^{1+\epsilon}$, $K = 20.2^{\frac{1}{2}\epsilon^{2}+1}$ · G' is K-almost-reg Pf (Sketch) Exer Adetails Let $t = \frac{1}{20} = 2^{\frac{1}{62} + 1}$ $|V_i| = \frac{1}{2}$ Partition V(G) = V, U. .. V 2t of equal size, where V, constains the highest degree uses

Case 1 ≤ half edges incident to VI • delete V_1 i delete vxs of deg $< \frac{c}{10}n^{\epsilon} \Rightarrow G'$ (:) repeatedly (low-deg) Case 2 > half edges incident to V1 02 V3 averaging = V; s.t. $\begin{array}{c} \underset{c}{\operatorname{eging}} \xrightarrow{} \exists V_{i} \quad s.t. \\ e_{G}(V_{i}, V_{i}) \xrightarrow{} \frac{1}{4t} e(G) \\ W_{i} \xrightarrow{} V_{i} \xrightarrow{} V_{$ this process must terminates a large graph at case 1 for $\left| \cdot \right|$ Recall KST: $ex(n, K_{r,t}) = O(n^{2-\frac{1}{r}})$ Thin (Füredi, Alon-Krivelevich-Sudakov) Let H be a bip. gr w./ bipertition AUB where each us in A has deg ≤ r in $B \implies ex(n, H) = O(n^{2-\frac{1}{r}})$ extends KST Rude

Def In a bip graph w/ UUW U W Corr a subset $R \subset W$ (or $R \subset U$) is Called (r,h)-rich if V r-set R'CR has 2, 6 common weighbors Prop1 Given a bip. gr G w/ bip. UUW. W if W contains an (r,h)-rich set of size zh => G contains any h-ux bip. H w/ max deg r on one side. PF. Embed B > R rich set un-used us in $N_{\mathcal{G}}(\mathcal{P}(N_{\mathcal{H}}(a)))$ op. frids a rich en HaeA, map a to an The next prop. finds a rich subset in an asymmetric bip. gr w./ large degree Prop 2 let H bip. on AUB, h us, us in A deg = r Let G bip. on UUW, Suxs in U have deg > h > W contains on (r, h)-rich set of size h In particular, $H \subseteq G$.

Pf Shall find such rich set in a neighborhol of a vx in U. $\sim W$ · Take a maximal partial map $\mathcal{Q}: \left(\mathcal{Q} \right) \xrightarrow{\mathcal{Q}} \left(\mathcal{$ (think of us in U as colors assigned to r-subsets) if $\mathcal{Q}(u) = R \in \binom{W}{r}$, then $R \subseteq N(u)$, $\forall R \in (W), \varphi^{-1}(R)$ has size $\leq h$ (i.e. we do not assign more than h colors to any R) • φ is injective i.e. $|\varphi(u)| \leq 1$ \forall uell As $|U| > h(\frac{|W|}{r}) \Rightarrow \exists a \lor b \in U$ which is not assigned to any r-set in W Claim An h-set in N(b) is $\begin{pmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r}$ (r,h)-rich. PF NTS ¥ r-set T⊆B has > h common neighbors Note $|(\varphi^{-1}(T))| = h$ we have h colors assigned to T for o.w. letting P(b)=T & maximality of Q

Thm 3 (Random Zooming , Gil-Fernandez - Hyde-Liu - Pikhunko-Wu Let d? max {40, zh} and G be a bip. gr on U UW s.t. every vx in U has deg ?, d in W. If $(\mathcal{P}) \cdots \frac{1}{2|w|} \left(\frac{|\mathcal{U}|}{4h}\right)^{r} \frac{d}{2} \ge \max \{20, h\}$ ⇒) G contains any h-vx bip. H w./ max deg r on one part. Exer: Thm 3 => F-A-K-S Idea: By Prop2, suffices to find U'CU, WCW inducing asymmetric bip w/ large deg on U'side To find such U'&W' we tandomly 200m into a subset WCW Pf · Let $P = \frac{1}{2|W|} \left(\frac{|W|}{4h}\right)^{r}$ If $|U| > 4h(2|W|)^{r}$, replace : t w.) a subset of size exactly 4h(21W) > (D)holds & P=1

. Let WCW be a p-random subset of \mathcal{N} Where each x in W is chosen w. / prob. p indep. of others • For $u \in U$, $X_u = d_G(u, W')$ W $= \sum_{w \in N(u)} \int \{w \in W'\}$ Sum of indep. Bernoulli r.v. $\mathbb{E} X_u = p \cdot d(u) \ge p \cdot d$ flow-tail Chernoff pd/1232 => $\Pr\left(X_{u} < \frac{Pd}{2}\right) \leq e^{1/2} \leq \frac{1}{4}$ Let $M' = \int u \in U$: $X_u \ge \frac{Pd}{2} \frac{7}{5}$ $\frac{Claim}{P_r}\left(||W'|>2p||W|\right) + P_r\left(||U'|<||U||\right) < 1$ Claim =) with positive probability none of these two events hoppen. That is . $\int_{\mathbb{R}^{d}} \left| \int_{\mathbb{R}^{d}} W_{1}^{\prime} \right| \leq \sum_{j=1}^{d} \left| \int_{\mathbb{R}^{d}} W_{j}^{\prime} \right|$ $||u'| \ge |u|$ $+(\mathcal{O}) \implies |\mathcal{U}'| > h(|w'|)$

• Choice of $U' \Rightarrow \deg to W' > Pd'_2 > h$ $Pf of Claim (i) Pr(|U'| < |U| / 4) = 2 \leq 1/2$ Suppose 2>1/2 $\Pr\left(X_{u} < \frac{Pd}{2}\right) \leq e^{-\frac{Pd}{12}} \leq \frac{1}{4}$ $\mathbb{E}[U'] = [U] \cdot P_r(X_u \ge \frac{pd}{2})$ 7 3/4/ $\mathbb{E}[u'] \leq 2 \cdot \frac{|u|}{4} + (1-2)|u| \leq$ 5141 8 (ii) $P_r\left(|w'|>2p|w|\right) \leq \frac{1}{4}$ As $|w| > d \Rightarrow E|w| = p|w|$ > pd > 40 upper tail Cherneff => $\Pr(|w'| > 2p|w|) \le e^{-\frac{p|w|}{3}} \le k_{4}$