

Lecture 2

Recap_			•		gra	phs	 P	of the	15!/	cy	cle	s. /	ا . د	•~~(p let	e	(m	ultip	الممه	ite?). 4	3r
	٠	٠	٠	•		•	 ٠	٠	٠	٠	٠	٠	٠	٠			•		٠	٠	٠	٠

Z d(v)= Ze(G) Hardshaking lemma

Mantels thm: Δ -free \Rightarrow $e(G) \in [\frac{n^2}{4}]$

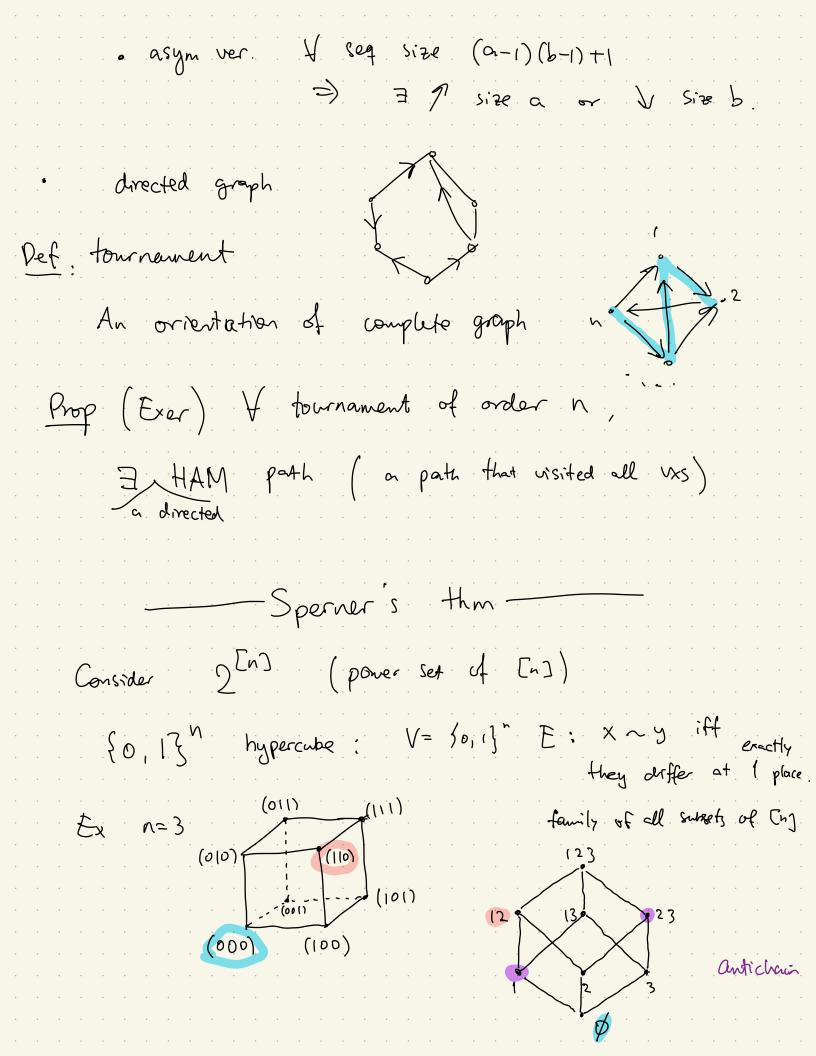
Induction (on # vxs n)

Ramsey # bower bd constr. Using probability

odd/even town via linear algebra

Erdős - Szekeres

Consider a seg of natural numbers


WANT: long monotone subseq (2), 1)

Thm (E-Sz) Y seq of distinct natural #15 of size

(K-1)2+1 =>] monotone seq of size k

pigeonhole / averaging argument

Pf :	Consider on arbitrary seg a, az,, ak-13+1, a:EN
	Goal : find monotone Tor Jain ain
	Label each # a; by the length of longest monotone of seq ending at a; l(ai)
	monotone / seq ending at a; ! (ai)
	$(a_i) \leq k-1$ $0, \omega$.
0.65.2 By	pigeonhale & Obs 1
	Some label $r \in [k-1]$ $s,t \ni a_{i_1}, \dots, a_{i_k}, x,t$. $ l(a_{i_j}) = r \forall j \in [k] $
Obs 3	$a_{i_1} > a_{i_2} > \dots > a_{i_k} \iff \text{form a monotone}$
: : : : : !L((i) r seq
	Qi, > Qiz for o.w. l(Qiz) > r+1 using
Rnuk	Board is optimal an book & blodes k-1
Tight	It example: $k=5$
	hout I or I seg of a,
	Size K

Def A family of sets $A \leq 2^{Cn}$ is an antichain if no element of A is a subset of another. Any lavel (all sets of the same size) (N) = # all size-k sets ([N] Thm (Sperner) The size of the largest antichain in 2(n) is $\binom{n}{2}$ LYM > sperner Thm (LYM ineq) Lubell - Yamamoto - Meshalkin Y antichain F C 2 En FEB (IFI) Pigeonhole E-SZ
Double Counting LYM Pf 1 (Double counting) n1 = # of all permutation of (n) # permutations satisfying = |F|! (n-1F1)!

F Cn) F O,w. FCF1 or $\sum |b(b)| = \sum |b| |b| |b| |b| |b|$. Take a unit randon perm. $\mathcal{S}_{n} = \left(\mathcal{S}_{n}, \mathcal{S}_{n}, \mathcal{S}_{n}\right) \times \left(\mathcal{S}_{n}\right) \times \left(\mathcal$ • $\forall K \in [n]$, let $I_K = \{\delta_1, \delta_2, ..., \delta_k\}$ (initial K-segment $I_1 \subset I_2 \subset I_3 \subset \subset I_n$ = at most one of them can be in I · Note Ik ~ (tn) & all k-subsets of (tn)

* Note Ik ~ (tn) & all k-subsets of (tn) $F = \sum_{k=1}^{n} \frac{f_{k}}{f_{k}} = \sum_{k=1}^{n} \frac{f_{k}}{f_{k}}$ linearity of expectation $\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \frac{f_{k}}{f_{k}} = \int_{$ Z Pr (IkEF) Pr (IKEF) = Pr (IK=F for some FEF)

Topic 1 Extremal Graph Theory

N-1xs H-free Q: max # edges in G? Turán problem

$$ex(n, H) = max \{e(G): G - n ws\}$$

Turán/extremal
rumber of H Mantel: $e_X(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$

Turán graph Tn,

n-vertex complete

each part set of size [/r] or [/r]

 $ex(n, K_{r+1}) = e(T_{n,r})$ Thm (Turán)

Furthermore, Tryr is the unique extremal graph.

Fact
$$(-\frac{1}{r})\frac{n^2}{2}$$
 - $0(r) \leq e(T_{n,r}) \leq (1-\frac{1}{r})\frac{n^2}{2}$

$$\mathcal{O}_{\mathcal{A}}(\cdot,\cdot) = \mathcal{O}_{\mathcal{A}}(\cdot,\cdot) = \mathcal{O}_{\mathcal{A}(\cdot,\cdot)}(\cdot,\cdot) = \mathcal{O}_{\mathcal{A}}(\cdot,\cdot) = \mathcal{O}_{\mathcal{A}}(\cdot,\cdot) = \mathcal{O}_{\mathcal{A}}(\cdot,\cdot) = \mathcal{O}_$$

$$f(n) = o(g(n)) : \frac{f(n)}{g(n)} \rightarrow o \quad n \rightarrow \infty$$

$$f(n) = O(g(n)) : f(n) \leq C \cdot g(n)$$

Exer Among	all complete r-partite graphs
	Tn, r has the most # edges
G N-VX Kr4-fice	if $\exists \Gamma \text{-partite graph } F$ s.t. $e(F) \geqslant e(G)$ $=) Turán 's thm$
Exer Extend of Mantel!	the pfs (Pf 2 Max-dog ux) s than to prove Turán's than.
Pf 2 Zykou Consider Pf a Fix an	an n-ux extremel gr. G: e(G) = ex(n, Kr+1) ordering of uxs V1, V2,, Vn
	long this ordering symm non-adj of exs have the same degreepairs
If V1U2 \$ E(G), make Uz a twin of U,

i si i r For Vi, find the sa	nallest gzi s.t.
in a diameter of the control of the	DO Synan.
Process ends in n steps	
At the end: non-adjacency	is an equivalence
⇒ Obtain a complete	relation multipartite gr
# parts Ksr	

www.ibs.re.kr/ecopro/spring-2024

March
3/12 10 AM Beijing time