Spring 2024 Extremal Combinatorics
 Homework 2

Hong Liu

Due April 11

Please submit 5 out of 6 problems for grading.

1. Let $G=(V, E)$ be a graph with $|V|=n$ and $|E|=\frac{k n}{2}$, where k is a positive integer. Show that G contains an independent set of size at least $\frac{n}{k+1}$.
2. Let $G=(V, E)$ be a graph. For $Y \subseteq V$ and $v \in Y$, define $d_{Y}(v)=|Y \cap N(v)|$,

$$
S(Y)=\sum_{v \in Y} \frac{1}{d_{Y}(v)+1}
$$

Suppose $Y=Y_{0}$ maximizes $S(Y)$ and $\left|Y_{0}\right|$ is smallest possible. Prove that Y_{0} is an independent set.
3. Let $G=(V, E)$ be a graph on n vertices. For any edge $e \in E$, denote by $k(e)$ the size of the largest clique in G containing e. Prove that

$$
\sum_{e \in E} \frac{k(e)}{k(e)-1} \leq \frac{n^{2}}{2}
$$

4. Let a, b be positive real numbers. Place 100 points on the Euclidean plane, where two points possibly share the same position. As a and b vary, what is the largest possible number of (unordered) pairs of points that are either a or b apart?
5. Find the smallest integer n such that one can remove at most n edges from every 1000 -vertex 4-regular graph to make it bipartite.
6. Let $n=2 k$ with $k \in \mathbb{N}_{+}$. Suppose \mathcal{F} is a family of subsets on $[n]$ such that

- for any $A \subseteq[n]$, there exist $B, C \in \mathcal{F}$ such that $B \cup C=A$ and $B \cap C=\varnothing$.

Show that $|\mathcal{F}| \geq(1-o(1)) \cdot 2^{k+1}$.
Hint: Consider the auxiliary graph on vertex set \mathcal{F}, where we put an edge between A and B if and only if $A \cap B=\varnothing$.

