Spring 2024 Extremal Combinatorics

Homework 1

Hong Liu

Due March 28

Please submit 6 out of 8 problems for grading. You have to choose at least two problems from Problem No.6, 7 and 8.

1. Given *n* irrational numbers x_1, \ldots, x_n , what is the maximum number of pairs $\{x_i, x_j\}$ such that $x_i + x_j$ is rational? Give an example reaching the maximum.

2. Let G be a graph on n vertices and m edges. Show that G has a subgraph H of minimum degree $\delta(H) > \frac{m}{n}$.

3. Let G be a triangle-free graph on n vertices. We denote by e(G) and $\delta(G)$ its number of edges and its minimum degree, respectively. Recall the following folklore result:

G is bipartite if and only if G contains no odd cycle.

- (1) Suppose G is non-bipartite. Show that $e(G) \leq \frac{(n-1)^2}{4} + 1$.
- (2) Suppose $\delta(G) > \frac{2n}{5}$. Show that G is bipartite.

4. A *V*-shape sequence is a real sequence x_1, \ldots, x_n such that

• there exists $i \in \{1, \ldots, n\}$ such that x_1, \ldots, x_i is decreasing and x_i, \ldots, x_n is monotone.

For any fixed positive integer t, find the smallest positive integer n = n(t) such that

• every permutation sequence of $1, \ldots, n$ contains a V-shape subsequence of length t.

5. Suppose A_1, \ldots, A_{n+1} are non-empty subsets of $\{1, \ldots, n\}$. Show that there exist disjoint nonempty index sets $I, J \subseteq \{1, \ldots, n+1\}$ such that $\bigcup_{i \in I} A_i = \bigcup_{i \in J} A_j$.

6. Let G be a graph on m edges with the following property:

• Any red-blue edge-coloring of G generates either a red K_s or a blue K_t .

Show that $m \ge \binom{R(s,t)}{2}$, where R(s,t) denotes the standard 2-color Ramsey number.

7. Let P_5 be the path on 5 vertices. Determine the extremal number ex(100, P_5).

8. For graphs G and H, we say that G is H-saturated if G does not contain H as a subgraph yet adding any edge into G creates a copy of H. The saturation number $s_n(H)$ denotes the smallest possible number of edges in an n-vertex H-saturated graph G.

(1) Let $(A_1, B_1), \ldots, (A_m, B_m)$ be set pairs with $A_i \cap B_j = \emptyset$ if and only if i = j. Show that

$$\sum_{i=1}^{m} \frac{1}{\binom{|A_i|+|B_i|}{|A_i|}} \le 1.$$

(2) Determine the saturation number of the *r*-clique $s_n(K_r)$.