Spring 2024 Extremal Combinatorics
 Homework 1

Hong Liu

Due March 28

Please submit 6 out of 8 problems for grading. You have to choose at least two problems from Problem No.6, 7 and 8.

1. Given n irrational numbers x_{1}, \ldots, x_{n}, what is the maximum number of pairs $\left\{x_{i}, x_{j}\right\}$ such that $x_{i}+x_{j}$ is rational? Give an example reaching the maximum.
2. Let G be a graph on n vertices and m edges. Show that G has a subgraph H of minimum degree $\delta(H)>\frac{m}{n}$.
3. Let G be a triangle-free graph on n vertices. We denote by $e(G)$ and $\delta(G)$ its number of edges and its minimum degree, respectively. Recall the following folklore result:

$$
G \text { is bipartite if and only if } G \text { contains no odd cycle. }
$$

(1) Suppose G is non-bipartite. Show that $e(G) \leq \frac{(n-1)^{2}}{4}+1$.
(2) Suppose $\delta(G)>\frac{2 n}{5}$. Show that G is bipartite.
4. A V-shape sequence is a real sequence x_{1}, \ldots, x_{n} such that

- there exists $i \in\{1, \ldots, n\}$ such that x_{1}, \ldots, x_{i} is decreasing and x_{i}, \ldots, x_{n} is monotone. For any fixed positive integer t, find the smallest positive integer $n=n(t)$ such that
- every permutation sequence of $1, \ldots, n$ contains a V -shape subsequence of length t.

5. Suppose A_{1}, \ldots, A_{n+1} are non-empty subsets of $\{1, \ldots, n\}$. Show that there exist disjoint nonempty index sets $I, J \subseteq\{1, \ldots, n+1\}$ such that $\bigcup_{i \in I} A_{i}=\bigcup_{j \in J} A_{j}$.
6. Let G be a graph on m edges with the following property:

- Any red-blue edge-coloring of G generates either a red K_{s} or a blue K_{t}. Show that $m \geq\binom{ R(s, t)}{2}$, where $R(s, t)$ denotes the standard 2-color Ramsey number.

7. Let P_{5} be the path on 5 vertices. Determine the extremal number ex $\left(100, P_{5}\right)$.
8. For graphs G and H, we say that G is H-saturated if G does not contain H as a subgraph yet adding any edge into G creates a copy of H. The saturation number $s_{n}(H)$ denotes the smallest possible number of edges in an n-vertex H-saturated graph G.
(1) Let $\left(A_{1}, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$ be set pairs with $A_{i} \cap B_{j}=\varnothing$ if and only if $i=j$. Show that

$$
\sum_{i=1}^{m} \frac{1}{\substack{\left|A_{i}\right|+\left|B_{i}\right| \\\left|A_{i}\right|}} \leq 1
$$

(2) Determine the saturation number of the r-clique $s_{n}\left(K_{r}\right)$.

