
Problem 1

Problems

Proposed by Jozsef Balogh, University of Illinois at Urbana-Champaign

The famous Tree Packing Conjecture (TPC) posed by Gyárfás states:

Conjecture. Any set of n− 1 trees Tn, Tn−1, . . . , T2 such that Ti has i vertices, packs1 into Kn.

Bollobás suggested a weakening of TPC in the Handbook of Combinatorics:

Conjecture. For every k ≥ 1, there is an n(k) such that if n ≥ n(k), then arbitrary set of k trees
T1, T2, . . . , Tk such that Ti has n− i+ 1 vertices pack into Kn.

There are several partial results, like it is known for k ≤ 5 (unpublished). Other results on TPC
when there are maximum degree conditions on the trees. I trust that the second conjecture is within
the reach, in particular in view of results of Balogh and Palmer, see below:

If we let the complete graph to have one more vertex than allowed by the first conjecture, then
we can pack many trees without conditions on their structure.

Theorem. Let n be sufficiently large and t = n1/4. If T1, T2, . . . , Tt are trees such that |Ti| = n−i+1
for every i, then T1, T2, . . . , Tt pack into Kn+1.

Eliminating a single case from the proof of the Theorem gives the following proposition.

Proposition. Let n be sufficiently large and t = n1/4. If T1, T2, . . . . , Tt are trees such that |Ti| =
n− i+ 1 and Ti is not a star for each i, then T1, T2, . . . , Tt pack into Kn.
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1Packing means that the edge set of Kn is partitioned into classes En, . . . , E2, such that Ei is isomorphic to Ti.

1



Problem 2

Partition problem for clique-free graphs

Proposed by Felix Christian Clemen, Karlsruhe Institute of Technology

Let G be a graph and A a vertex-subset of G. We denote by e(A) the number of edges in G with
both vertices from A. Let

D2(G) := min
A⊆V (G)

(e(A) + e(Ac)).

Sudakov [5] proved that every K4-free n-vertex graph G can be made bipartite by removing at most
n2/9 edges, i.e. D2(G) ≤ n2/9. Note that this result is sharp because the balanced complete 3-partite
graph requires at least n2/9 edges removed to make it bipartite. Sudakov [5] also conjectured the
following generalization.

Conjecture (Sudakov [5]). Fix r ≥ 3. For every n-vertex Kr+1-free graph G, it holds that

D2(G) ≤

{
(r−1)2

4r2
· n2 r odd, and

r−2
4r · n2 r even.

Hu, Lidický, Martins, Norin, and Volec [2] verified Conjecture for r = 5 using the method of
flag algebras. Recently Reiher [4], building up on work of Liu and Ma [3], proved the corresponding
sparse-half-version of Sudakov’s result on K4-free graphs: Every K4-free graph contains a set of size
n/2 spanning at most n2/18 edges. If true, the following conjecture would generalize both Sudakov’s
and Reiher’s result.

Conjecture (Balogh, Clemen, Lidický [1]). Let n be an even positive integer and G be a K4-free graph
on n vertices. Then there exists a partition of its vertex set V (G) = A∪B such that |A| = |B| = n/2
and e(A) + e(B) ≤ n2/9.

If true, Conjecture is sharp, because the complete balanced 3-partite graph satisfies e(A)+e(B) ≥
n2/9 for any partition V = A ∪B with |A| = |B| = n/2.
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Problem 3

A problem on clique cover numbers

Proposed by Jialin He, The Hong Kong University of Science and Technology

A set C of cliques is a p-clique cover of G if for every p-clique S ⊆ V (G) there is a clique Q ∈ C
that covers S (i.e., S is a subgraph of Q). Let ccp(G) denote the p-clique cover number of G, that is
the minimum number of cliques in a p-clique cover of G.

When p = 2, cc2(G) also referred to as the intersection number of a graph. Erdős, Goodman and

Pósa [2] proved that cc2(G) ≤ ⌊n2

4 ⌋ for every graph on n vertices. Equality holds if and only if G is
isomorphic to T2(n), here Tp(n) denotes the p-partite Turán graph on n vertices. Dau, Milenkovic
and Puleo [1] proposed the following conjecture and proved the case when p = 3.

Conjecture. If p ≥ 3 and n ≥ p are integers, then for every n-vertex graph G, ccp(G) ≤ ccp(Tp(n)).
Equality holds if and only if G is isomorphic to Tp(n).
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Problem 4

Minimum size of a k-base for finite sets

Proposed by Dias Mattos, Leticia, University of Illinois Urbana-Champaign

Shotgun assembly of random graphs
For a graph G, let Nr(G) be the graph induced by the vertices at distance at most r from v, where

the vertices are unlabelled except for the vertex v. For an integer r ≥ 1 and graphs G and H, we say
G and H have isomorphic r-neighbourhoods if there is a bijection φ : V (G) → V (H) such that for
each vertex v of G there is an isomorphism from the r-neighbourhood Nr(v) around v in G to the
r-neighbourhood Nr(φ(v)) around φ(v) in H which maps v to φ(v). We say that G is reconstructible
from its r-neighbourhoods (or r-reconstructible) if every graph with r-neighbourhoods isomorphic
to those of G, is in fact isomorphic to G. The general problem is to determine for what range of p
a random graph G ∈ G(n, p) is reconstructible (or non-reconstructible) from its r-neighbourhoods
with high probability (i.e. with probability tending to 1 as n tends to infinity).

The following problem was posed by Johnston, Kronenberg, Roberts and Scott [?]:

Question. Determine when G(n, p) is 2-reconstructible. Is there a threshold around n−3/4 (up to a
polylogarithmic factor)?

Largest subgraph from a hereditary property in a random graph
Let P be an arbitrary hereditary property of graphs. We assume that P is non-trivial, i.e., it

contains all edgeless graphs and misses some graph. For a graph G, let ex(G,P) denote the maximum
number of edges of a subgraph ofG that belongs to P; the above definition of non-triviality guarantees
that this number is well-defined. In [?], Alon, Krivelevich and Samotij determined, for every fixed
edge probability p ∈ (0, 1), the typical asymptotic value of ex(G(n, p),P) for the random graph
G(n, p) as n tends to infinity. In the concluding remarks section in [?], they posed the following
questions:

Question. Let p ∈ (0, 1) be constant. If the hereditary property P misses a bipartite graph, then
ex(G(n, p),P) ≤ n2−ϵ, for some ϵ > 0.

Question. Determine ex(G,P) when p tends to 0.

Random subgraphs of the hypercube
Analogous to the case of the binomial random graph G(n, p), it is known that the behaviour

of a random subgraph of an n-dimensional hypercube, where we include each edge independently
with probability p, which we denote by Qn

p , undergoes a phase transition when p is around 1/n.
More precisely, standard arguments show that significantly below this value of p, with probability
tending to one as n → ∞ (whp for short) all components of this graph have order O(n), whereas
Ajtai, Komlós and Szemerédi showed that significantly above this value, in the supercritical regime,
whp there is a unique ‘giant’ component of order Θ(2n). In G(n, p), much more is known about the
complex structure of the random graph which emerges in this supercritical regime. For example, it
is known that in this regime whp G(n, p) contains paths and cycles of length Ω(n).

In [?], Erde, Kang and Krivelevich obtained an analogous result in Qn
p . In particular, they showed

that if p = (1 + ϵ)/n, where ϵ > 0 is some positive constant, then whp Qn
p contains a cycle of length

Ω
(

2n

n3(logn)3

)
. At the end of their paper, they posed the following questions:

Question. Let ϵ > 0 and p = (1 + ϵ)/n. Is it true that whp Qn
p contains a cycle of length Ω(2n)?

Question. Let p = ω(1/n). Is it true that whp Qn
p contains a path of length (1− o(1))2n?

4



References
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Problem 5

Minimum size of a k-base for finite sets

Proposed by Haoran Luo, University of Illinois Urbana-Champaign

Let X be a set of size n. A family H ⊆ P(X) is a k-base for X if every subset S ⊆ X is the union
of at most k sets in H. For example, let X1, X2, . . . , Xk be a partition of X where ||Xi| − |Xj || ≤ 1;
then

Hn,k :=

k⋃
i=1

P(Xi)

is a k-base. In 1993, Erdős (see [3]) proposed the problem of determining the minimum size of a
2-base and made the following conjecture.

Conjecture. If X is a set of size n and family H ⊆ P(X) is a 2-base for X, then

|H| ≥ |Hn,2|.

Frein, Lévêque, and Sebő [2] made an analogous conjecture for all k.
Under a stronger assumption that every subset S ⊆ X is the union of at most k disjoint sets in H,

Ellis and Sudakov [1] confirmed Conjecture for sufficiently large n when k = 2, and for sufficiently
large n that are multiple of k when k ≥ 3.
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Problem 6

Problems

Proposed by Sam Mattheus, University of California San Diego

In recent work with Jacques Verstraete [3], there were some questions that we were not (yet?)
able to answer. Here are two of them.

Our starting point is the graph NU(3, q2), which exists for every prime power q. Its relevant
properties are as follows, see for example [1, Section 3.1.6]. Recall that a strongly regular graph
with parameters (v, k, a, c) is a k-regular graph on n vertices such that every two adjacent (resp.
non-adjacent) vertices have a (resp. c) common neighbors.

Theorem. The graph Hq = NU(3, q2) satisfies the following properties.

1. It is strongly regular with parameters

n = q4 − q3 + q2, k = (q + 1)(q2 − 1), a = 2q2 − 2, c = (q + 1)2;

2. Hq has eigenvalues k, q2 − q − 2 and −q − 1;

3. it is the edge-disjoint union of q3 + 1 maximal cliques each of size q2. We denote this set of
cliques by C;

4. every two cliques in C have exactly one vertex in common;

5. every copy of K4 in Hq has at least three vertices in a clique of C.

Property 4 has a very interesting consequence: the graph Hq can be made K4-free by replacing
every clique in C by a bipartite graph. Typically, we will replace a clique by a complete bipartite
graph in a random fashion. This preserves the density (up to constant) while keeping an appropriate
amount of (pseudo)randomness. This procedure is sometimes called a ‘random block construction’
in the literature.

The spectrum of a random block construction. For example, David Conlon used this idea
to construct a sequence of triangle-free pseudorandom graphs, coming from the collinearity graph of
generalized quadrangles [2]. The latter family of strongly regular graphs is defined for every prime
power q and has parameters (q3+q2+q+1, q2+q, q−1, (q+1)2). From the theory of strongly regular
graphs, it follows that its non-trivial eigenvalues are −q−1 and q−1. It would be interesting to know
what we can say about the behavior of the smallest eigenvalue by once we perform the random block
construction. While in our case, the smallest eigenvalue drops from −q − 1 to at most −q2 whp, as
pointed out to us by Carl Schildkraut, it could be the case that in David’s construction the smallest
eigenvalue is at least −cq for some c > 0. This would lead to a spectral proof of r(3, t) = Ω(t2/ log2 t)
using the ideas of [3].

Problem. Show that whp the smallest eigenvalue of the triangle-free graphs constructed by Conlon
is at least −cq for some constant c > 0.

Counting independent sets. In [3] we count the number of independent sets of size t = q log2 q
using the container method (or rather the Kleitman-Winston algorithm). It turns out that this

number is at most
(
cq2

t

)
≈ (cq/ log2 q)t for some constant c > 0. Remark that Hq (and hence H∗

q ) has
independent sets of size roughly q2, so this count is sharp up to constants. If one would be able to
prove a similar statement for slightly smaller independent sets, i.e. t = q log q, then our proof would
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actually show r(4, t) = Θ(t3/ log2 t). General results on container methods seem to be unable to
break through the log2 q barrier, but perhaps there is a clever way to adapt the ideas to the more
structured graph model H∗

q .

Problem. Show that the number of independent sets in Hq of size t = q log q is at most (cq/ log q)t

for some c > 0.

References

[1] A. E. Brouwer and H. Van Maldeghem. Strongly regular graphs. Vol. 182. Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, 2022, xvii+462.

[2] D. Conlon. A sequence of triangle-free pseudorandom graphs. Combin. Probab. Comput., 26.2
(2017), 195–200.

[3] S. Mattheus and J. Verstraete. The asymptotics of r(4, t). Accepted to the Annals of Mathe-
matics, available at https://arxiv.org/abs/2306.04007.

8

https://arxiv.org/abs/2306.04007


Problem 7

Number of independent sets in k-connected bipartite graph

Proposed by Eero Räty, Ume̊a University

Consider the partially ordered set on [t]n := {0, . . . , t−1}n equipped with the natural coordinate-
wise ordering. Let A(t, n) denote the number of antichains of this poset. The quantity A(t, n) has a
number of combinatorial interpretations, see e.g. [4]. A number of results in the literature [5, 6, 7]
show that log2A(t, n) = (1 + o(1)) · α(t, n), where α(t, n) is the width of [t]n, and the o(1) term
goes to 0 for t fixed and n tending to infinity. Recently, with Falgas-Ravry and Tomon [1], we
proved that there exists an absolute constant c such that for every t, n ≥ 2 we have log2A(t, n) ≤(
1 + c · (logn)3

n

)
· α(t, n).

Even less is known regarding the lower bounds. We pointed out that an easy argument implies
that the o(1)-term must be at least 2−c′n for some constant c′, which is known to be the case for the
Boolean lattice [3].

Let N and n be positive integers with n|N . A result of Kahn [2] implies that the number
of independent sets in n-regular bipartite graph G on 2N vertices is at most (2n+1 − 1)N/n =

exp2

((
1 + 1+o(1)

n

)
N
)
. This is tight, with equality attained by choosing G to be disjoint copies

of Kn,n. However, when compared to bipartite graphs arising naturally from the hypergrid, this
example is not particularly interesting as the graph splits into a number of connected components.

What happens if we further impose that G needs to be k-connected for some k? Keeping the
hypergrid example in our mind, we are interested up to the regime when k = βn where β is some
fixed small constant, and where N ≫ n ≫ 1. By considering various modifications2 of the optimal
example consisting of disjoint union of Kn,n’s, it seems plausible that the error term in the Kahn’s
bound could be improved under some additional assumption concerning the connectivity of G. This
leads to the following question, which might guide us towards obtaining an improved bound for
A(t, n).

Question. Let β be a fixed constant with β < 1
4 . Does there exist γ ∈ (0, 1) so that whenever G is a

n-regular bipartite graph on 2N vertices which is k-connected for some k ≤ βn and N is sufficiently
large in terms of k and n, then the number of independent sets in G is at most exp2

((
1 +O

(
γk

))
N
)
?
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Problem 8

Problem

Proposed by Chong Shangguan, Shandong University

We will discuss a problem of Erdős, Frankl, and Füredi [1] on cover-free families. A family F ⊆ 2[n]

is said to be d-cover-free if for arbitrary distinct d + 1 members A0, A1, . . . , Ad ∈ F , A0 ⊈ ∪d
i=1Ai.

The maximum size of (uniform) cover-free families has been studied extensively, see e.g. [1, 2]. We
will focus on another problem with slightly different flavor, as stated below.

Clearly the set of singletons T = {{1}, . . . , {n}} is d-cover-free for every d ∈ [n]. However such
a cover-free family is trivial in the sense that the number of members in this family is equal to the
size of the underlying set. A d-cover-free family F ⊆ 2[n] is called non-trivial if |F| > n. Given d, let
T (d) be the smallest n such that there exists a non-trivial d-cover-free family defined on [n].

A projective plane of order d+1 is a point-line structure (P,L) with |P| = |L| = (d+1)2+(d+1)+1,
with (d+1)+1 points on each line, (d+1)+1 lines through each point, and every two distinct lines
has exactly one intersection. Therefore L is (d+ 1)-cover-free (however still trivial).

By deleting a line together with all points on this line from (P,L) one obtains an affine plane of
order d+1, which is a point-line structure (P ′,L′) with |P ′| = (d+1)2, |L′| = (d+1)2+(d+1), with
(d + 1) points on each line, (d + 1) + 1 lines through each point, and every two distinct lines have
at most one intersection. Therefore L′ is d-cover-free, which implies that T (d) ≤ (d+ 1)2, as long as
such structure exists. It is known that projective and affine planes exist for every prime power d.

Erdős, Frankl and Füredi conjectured that the above construction is essentially the best possible.

Conjecture ([1]). limd→∞
T (d)
d2

= 1, or even stronger, T (d) ≥ (d+ 1)2.

Currently the best known lower bound is due to Shangguan and Ge [3], who showed that T (d) ≥
15+

√
33

24 d2, using the classic result of Erdős and Gallai on the maximum number of edges in a graph
with bounded matching number.
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Problem 9

Problem

Proposed by Tuan Tran, University of Science and Technology of China

1 Isolation lemma

Consider a hypergraph H with vertex set [n]. A weight is simply a functions w : [n] → [M ]. This
weighting extends naturally to edges e ∈ E(H) by letting w(e) =

∑
i∈ew(i).

We say that e ∈ E(H) is a min-weight edge with respect to w if for all edges e′ ∈ E(H) we have
w(e′) ≥ w(e). A weight w ∈ [M ]n is isolating if there is exactly one min-weight edge, that is, there
is an edge e ∈ E(H) such that w(e′) > w(e) for all e′ ∈ E(H) \ {e}.

Given any hypergraph H, we define

Z(H,M) = {w ∈ [M ]n : w is isolating with respect to H}.

The Isolation Lemma asserts that |Z(H,M)| ≥ (1− n
M )Mn. The lemma has important applications

in computer science, such as the Valiant–Vazirani theorem and Toda’s theorem in computational
complexity theory.

Faber and Harris [2] made the following conjecture.

Conjecture (Faber–Harris, 2018). |Z(H,M)| ≥ n
∑M−1

k=1 kn−1.

The bound is attained, for example, by taking E(H) = {{1}, . . . , {n}}. We remark that Faber
and Harris verified their conjecture for graphs.

2 Touching simplices

How many d-dimensional simplices can be positioned in Rd so that they touch in such a way that all
their pairwise intersections are (d − 1)-dimensional? This is an old and very natural question. We
shall call f(d) the answer to this problem. In 1956, Bagemihl [1] posed the following conjecture.

Conjecture (Bagemihl, 1956). The maximal number of pairwise touching d-simplices in a configu-
ration in Rd is

f(d) = 2d.

The conjecture is verified for dimensions d ≤ 3. Zaks [7] showed that f(d) ≥ 2d. For the
upper bound, Perles [6] showed that f(d) < 2d+1. Very recently, Kisielewicz [3] announced that
f(d) ≤ 2d+1 − ω(1). He obtained this bound by relating f(d) to an extremal problem for finite sets
which we describe below.

Two words u, v ∈ {0, 1, ∗}n are called neighborly if there is precisely one i such that {ui, vi} =
{0, 1}. Two words u, v ∈ {0, 1, ∗}n are a twin pair if for some i ∈ [n] we have {ui, vi} = {0, 1} and
uj = vj for all j ̸= i. We say a family G ⊆ {0, 1, ∗}n is

• a d-code if |{i ∈ [n] : vi ̸= ∗}| = d for all v ∈ G;

• neighborly if every two words in G are neighborly;

12



Let g(d) denote the maximal size of a neighborly d-code without twin pairs. Kisielewicz showed that
f(d) ≤ g(d+ 1) and g(d) ≤ 2d − ω(1) (hence f(d) ≤ 2d+1 − ω(1)).

Kisielewicz and Przeslawski [4, 5] inductively construct a neighborly d-code without twin pairs
as follows. We begin with G2 = {00∗, ∗10, 1 ∗ 1}. Let m = 2d − 1 and define

Gd+1 = {w ∗m 0 : w ∈ Gd} ∪ {∗mw1 : w ∈ Gd},

where ∗m is the word consisting of m stars. It is not hard to show that Gd ⊆ {0, 1, ∗}2d−1 is a
neighborly d-code without twin pairs of size |Gd| = 3 · 2d−2. This implies g(d) ≥ 3 · 2d−2.

Conjecture (Kisielewicz, 2023). For d ≥ 2, g(d) = 3 · 2d−2. Moreover, up to isomorphism, Gd is the
unique extremal example.

The conjecture, if true, would imply f(d) ≤ g(d+ 1) = 3
2 · 2d.
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Problem 10

Problems

Proposed by Ethan Patrick White, University of Illinois at Urbana-Champaign

Turán numbers of Wickets
The Turán number of a linear 3-uniform hypergraph F is the maximum number of edges of a 3-

uniform linear hypergraph not containing a subgraph isomorphic to F , we denote this by exL(n, F ).
For all F with at most 5 edges, Gyárfás and Sárközy showed that either exL(n, F ) = o(n2) or
exL(n, F ) ≥ n2/9, with one exception: the wicket! The wicket W has nine vertices arranged in
a grid, and edges on each of the rows and columns, minus the middle column. Earlier this year,
Solymosi answered their question and proved that exL(n,W ) = o(n2). The deletion method shows
exL(n,W ) = Ω(n3/2). He poses the problem of determining exL(n,W ) more precisely.

Question. Determine exL(n,W ).

Avoiding triangles in grids
The largest subset of the grid [N ]× [N ] that does not contain an axis-parallel isosceles triangle,

often called a corner has size o(N2). An elegant proof of this is due to Solymosi using the triangle
removal lemma, and reasonably tight upper and lower bounds exist. Two variations on this problem
are the following.

Problem (Shkredov, Solymosi [2]). Determine the smallest subset S ⊂ Fp×Fp such that adding any
point to S creates an isosceles right triangle. This value is denoted sat(Fp × Fp, C).

Shkredov and Solymosi show p/
√
3 ≤ sat(Fp × Fp, C) ≤ p, and ask in particular for a saturated

subset of size at most p− 1.

Problem. What is the largest subset of [N ]× [N ] that does not contain an isosceles right triangle?
What is the largest subset of [N ]× [N ] that does not contain an isosceles triangle (tilted corners)?

For both of these questions, it would be interesting to find a construction with Ω(N1+c) points,
or upper bounds of the form O(N2−c) for any c > 0.
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Problem 11

Problem

Proposed by Michael Wigal, University of Illinois at Urbana-Champaign

It is well-known that in a connected graph, every pair of longest paths must pairwise intersect. It
remains an open question on whether every three longest paths always have nonempty intersection
in a connected graph.

15



Problem 12

Fuglede’s conjecture in finite fields

Proposed by Tao Zhang, Zhejiang Lab

Let p be a prime number.

Definition. A subset A ⊂ Fd
p is called spectral if there exists a subset B ⊂ Fd

p such that

{χa(x) = e
2πix·a

p : a ∈ B}

forms an orthogonal basis of the complex vector space L2(A). We then say B is a spectrum of A and
(A,B) is a spectral pair.

Definition. A subset A ⊂ Fd
p is said to tile Fd

p by translations if there exists a subset T ⊂ Fd
p such

that all elements in Fd
p can be uniquely represented as

a+ t,

where a ∈ A and t ∈ T .

The interest in the connection between spectral sets and tiles arises from a conjecture of Fuglede,
which states that for a subset Ω ⊂ Rd with positive and finite Lebesgue measure, L2(Ω) has an
orthogonal basis of exponentials if and only if Ω tiles Rd by translations. In 2004, Tao disproved the
Fuglede’s conjecture in Rd for dimensions d ≥ 5 by lifting a non-tiling spectral set in F5

3 to Euclidean
space. This sparked interest in the discrete setting of Fuglede’s conjecture. We summarize known
results of Fuglede’s conjecture in finite fields.

Theorem. Fuglede’s conjecture is false in following groups:

1. Fd
p for d ≥ 5;

2. F4
p for odd prime p.

And Fuglede’s conjecture holds in following groups:

1. F2
p;

2. F4
2;

3. F3
p for p = 2, 3, 5, 7.

Hence, the only remaining case is the following question.

Question. Fuglede’s conjecture holds or not in F3
p for p ≥ 11?
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