
Since flag algebras can be defined for various discrete structures, we can transform an
extremal problem into a problem expressible in terms of densities of some structures and
use flag algebras on them.

For instance, consider the following problem. Erdős, Faudree and Rousseau conjec-
tured in 1992 that any graph on n vertices and dn2

4
e + 1 edges contains asymptotically

at least 2
9
n2 edges that occur in a C5. It occurred that the constant is wrong as there is

a construction having asymptotically only 2+
√
2

16
n2 ≈ 0.2134n2 edges in C5. Despite the

fact that an occurrence in a C5 cannot be expressed in terms of graph densities, as well
as having exactly dn2

4
e+ 1 edges, we can solve this problem using flag algebras. In order

to express this problem in a density setting, we consider graphs with edges colored red
and blue, and additionally assume that there is no C5 containing a blue edge. For such
graphs we prove that if + ≥ 1

2
, then

(
8 − 2−

√
2
)
≥ 0.

This inequality means that if we consider any sequence of graphs with dn2

4
e + 1 edges,

then either the density of edges occurring in a C5 is at least 2+
√
2

8
as needed, or there are

o(n3) triangles. The remaining case can be solved using stability of triangle-free graphs.
As a second example, we show how to determine Ramsey numbers using flag algebras.

This is based on a paper by Lidický and Pfender. For graphs G1, . . . , Gk the Ramsey
number R(G1, . . . , Gk) is the smallest n for which in every edge coloring with k colors
of a complete graph Kn there exists copy of Gi with all edges colored i or some i ∈ [k].
In order to express it as a density problem, we consider edge colorings of graphs using k
colors forbidding for each i ∈ [k] appearance of a complete graph having Gi in color i,
as well as a triple of vertices x, yz with x, y non-adjacent and z connected to x and y
in different colors. This setting means that non-adjacent vertices forms a groups and
between any two groups we have all edges in the same color, i.e., we work on blow-ups
of complete graphs with colored edges. Note that if there exists a coloring of a complete
graph Kn without a copy of Gi in color i, then by considering its bow-ups we obtain a
sequence of graphs in the considered setting with the density of non-edges equal to 1

n
.

In particular, if we show that the density of non-edges in our setting is at most some δ,
then it implies that

R(G1, . . . , Gk) ≤
1

δ
+ 1.

As an example, we sketch the proof of R(K3, K3) = 6. Obviously R(K3, K3) ≥ 6
as there is an edge coloring of K5 using two colors without monochromatic triangles, so
we need to show that R(K3, K3) < 7. Consider the setting described in the previous
paragraph, so graphs with edges colored in two colors without , , , and .
We take n = 4 and consider two rooted graphs, each consisting of an edge in one of the
colors, and flags with one unlabeled vertex. Using an SDP solver returns semidefinite
matrices, that lead to the bound ≥ 0.17 > 1

6
. This implies that R(K3, K3) < 7 as

wanted.
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2.6 Differential method

Suppose we have a graph theory problem to maximize some function f(H1, H2, . . . , Hk)
of densities of graphs H1, . . . , Hk. If a graphon W realizes the maximum, then a small
perturbation of W should not give a higher value of f . This is the main idea of the dif-
ferential method developed by Razborov. Here we provide only an intuitive explanation.

Informally speaking, as a small perturbation we may consider for instance cloning
or removing a particular vertex. The change of the density of a graph H cased by
such a small perturbation using a fixed vertex is the difference between the density of
H containing the fixed vertex and the global density of H. We denote this difference
multiplied by |H| because of normalizing issues by ∂1H. In particular we have

∂1 = 2( − − − )

∂1 = 3( + − − − − − − )

For instance, if our problem is just to maximize the density of H, the extremal graphon
needs to satisfy ∂1H = 0 for every possible placement of the root. It is tempting to
think that one can just add J∂1HK = 0 to the set of constraints satisfied by an extremal
graphon W , which can then be used to derive an upper bound on d(H,W ). Unfortunately,
J∂1HK = 0 holds as an identity in the algebra, so such addition is not helpful. In order to
benefit from this approach, one needs to multiply ∂1H by some rooted expression g and
add an assumption Jg · ∂1HK = 0. For a suitable choice of g it can provide a profitable
constraint.

A different small perturbation that one may consider is to remove an edge between
two fixed vertices. This leads to defining ∂EH as the possible gain in the density of H
under removing a fixed edge. Because of normalizing issues, this needs to be multiplied
by
(|H|

2

)
. In particular,

∂E = 3( − − ).

Therefore, if our problem is to maximize the density of H, the extremal graphon
needs to satisfy ∂EH ≤ 0 as it should not be possible to gain by removing the fixed edge.
Similarly as before, we can consider any non-negative expression g on a rooted edge and
add to our constraints on the extremal graphon an assumption Jg · ∂EHK ≤ 0.

In general, assume a function f(H1, H2, . . . , Hk) of densities of graphs H1, . . . , Hk

attains its maximum in some point a = (a1, . . . , ak) and f is continuously differentiable
in some open neighborhood of the point a. Then for the extremal graphon it must hold

∂f

∂H1

(a) · ∂1H1 +
∂f

∂H2

(a) · ∂1H2 + . . .+
∂f

∂Hk

(a) · ∂1Hk = 0 (9)

for every placement of the root. And also

∂f

∂H1

(a) · ∂EH1 +
∂f

∂H2

(a) · ∂EH2 + . . .+
∂f

∂Hk

(a) · ∂EHk ≤ 0 (10)

for every placement of the rooted edge.
To observe how one can use this approach, we consider the following problem. For a

given density of edges, determine the minimum possible density of triangles. The question
appears in print in a paper of Erdős from 1955, but since the first non-trivial case was
solved by Rademacher in 1941, it is now known as the Erdős-Rademacher problem.
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Using a simple Cauchy-Schwarz inequality (Theorem 5) one can prove that always
≥ (2 − 1). This is equality for = 1 − 1/t and any integer t ≥ 1 as this bound

is achieved in a balanced complete multipartite graph. There were many improvements
to the above bound. In particular, Bollobás in 1976 proved the piecewise linear bound
between the points with = 1− 1/t for each integer t ≥ 2. For ∈

[
1− 1

t
, 1− 1

t+1

]
the

optimal construction is to consider a blow-up of Kt+1 with t blobs of equal size and one
smaller blob. This leads to the following optimal bound

≥
(t− 1)

(
t− 2

√
t(t− (t+ 1) )

)(
t+
√
t(t− (t+ 1) )

)2

t2(t+ 1)2
. (11)
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The problem was finally solved by Razborov in 2008 using flag algebras. In 2011
Nikiforov determined similar function for the density of K4, while in 2016 Reiher deter-
mined it for all bigger complete graphs. In 2017 Pikhurko and Razborov provided the
description of the extremal graphs for the triangle problem. While in 2020 Liu, Pikhurko
and Staden gave an exact solution for the number of triangles depending on the number
of edges for all large graphs whose edge density is bounded away from 1, together with a
description of the extremal graphs.

To present how one can use the differential method, we sketch a proof of the bound
(11) for t = 2, which means

≥ (1−
√

4− 6 )(2 +
√

4− 6 )2

18
for ∈

[
1

2
,
2

3

]
.

Denote by g( ) the right-hand side of the above inequality. Let f( , ) = g( )−
and a be the point in

[
1
2
, 2
3

]
× [0, 1], where the function f attains its maximum. We need
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to show that f(a) ≤ 0. If the maximum is attained for = 1
2

or 2
3
, then the bound

follows from the mentioned earlier result. Thus, f is continuously differentiable in the
open neighborhood of a. Using (9) multiplied by and averaged we obtain

Jg′( ) · ∂1 − · ∂1 K = 0,

which implies

2g′( )
q

2
y
− 2g′( ) 2 − 3 J · K + 3 · = 0. (12)

While using (10) multiplied by and averaged we get

Jg′( ) · ∂E − · ∂E K ≤ 0,

which leads to

−1

3
g′( ) + 3 J · K ≤ 0.

Subtracting this inequality from (12) we obtain

g′( )

(
2
q

2
y

+
1

3

)
− (3 J · K + 3 J · K) + 3 · ≥ 2g′( ) 2. (13)

By simple computations we have

2
q

2
y

+
1

3
= + ,

while comparing coefficients by all 4 graphs on 4 vertices containing a triangle we obtain
the inequality

3 J · K + 3 J · K ≥ 2 .

Thus, applying the above two expressions to (13) we obtain

(g′( ) + 3 − 2) ≥ (2 2 − )g′( ). (14)

Since the function g(x) for x ∈ (1
2
, 2
3
) satisfies the differential equation

g(x)(g′(x) + 3x− 2) = (2x2 − x)g′(x)

and g′(x) ≥ 1, so g′( ) + 3 − 2 > 0, the inequality (14) implies ≥ g( ) as wanted.
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