
Notice that in general the quantities Ja · bK and JaK · JbK for a, b ∈ AR can differ
significantly, even if a = b. For example, for the previously considered graphon U =
we have

J · K = J + K =
1

3
+ =

1

3
,

while

J K2 = 2 =
25

81
.

A general and useful bound is the following Cauchy-Schwarz inequality for flags.

Theorem 5. For any labeled graph R and any flags a, b ∈ AR

Ja · bK2 ≤
q
a2

y
·
q
b2

y
.

In particular
JaK2 ≤

q
a2

y
· JRK .

To illustrate the just introduced concepts, we prove Mantel’s theorem, which for
graphons says that = 0 implies ≤ 1

2
. Starting with an inequality J( − )2K ≥ 0,

valid because a square is always non-negative, we obtain

0 ≤
q
( − )2

y
= J · − 2 · + · K
= J + − − + + K

= +
1

3
− 2

3
− 2

3
+

1

3
+

= − 1

3
− 1

3
+ .

Dividing this inequality by 2 and adding to the equality = 1
3

+ 2
3

+ we get

≤ 1

2
+

1

6
+

1

2
+

3

2
≤ 1

2
( + + + ) + ,

which for = 0 implies that ≤ 1
2

as needed.
The above prove shows Mantel’s theorem only for graphons, but one can obtain from

it a proof of Mantel’s theorem for all graphs. Assume that there exists a counterexample
to Mantel’s theorem, i.e., a k-vertex graph G that does not contain triangles and has at
least k2+1

4
edges. Consider a sequence G[n] of blow-ups of G. Each graph G[n] does not

contain triangles, has kn vertices and at least k2+1
4
n2 edges, so its edge density is at least

k2+1
2k2

. From compactness, this sequence of graphs contains a convergent subsequence (one
can even show that it is convergent by itself) whose limiting graphon has triangle density
equal to 0 and edge density strictly larger than 1

2
, which contradicts the proven Mantel’s

theorem for graphons.
Additionally, observe that it follows from the proof that the equality in Mantel’s

theorem implies = 0 and = , which means that the extremal graphon corresponds
to sequence of complete bipartite graphs which are regular (up to lower error terms).

The crucial ingredient used in the proof of Mantel’s theorem was the inequality
1
2
J( − )2K ≥ 0 expressed as inequality on flags on 3 vertices. One may wonder why

exactly this inequality was used. The important advantage of applying flag algebra is the
fact that one can use computer optimization in order to find inequalities giving the best
estimate. We will briefly explain the idea behind this approach.
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2.1 Automatic approach

We focus on maximizing some linear expression of flags g in some graph class G. For
example, in Mantel’s theorem g = and G is a class of triangle-free graphs, while in
Goodman’s theorem g = 1 − − and G is a class of all graphs (we have the minus
sign here, because we want to find the minimum, not the maximum of + ).

Let us fix some integer n (at least of the size of the largest graph in g) and denote by
Gn the family of all graphs in G on n vertices up to isomorphism. If n is not too large, then
we can generate all flags in Gn and express g using identity (1) as g =

∑
H∈Gn gHH. In

order to find a useful inequality, as in the discussed example, consider a labeled graph R,
a vector v composed of all possible flags Fi ∈ GRm of order m ≤ (n + |R|)/2, and assign
some real coefficients qij to each pair of these flags. If the matrix Q = (qij)Fi,Fj∈GRm is
positive semidefinite, then the inequality

vQvT =
∑

Fi,Fj∈GRm

qijFi · Fj ≥ 0

holds for each choice of |R| labeled vertices. Using the definition of multiplication (2) we
obtain a linear inequality on rooted flags on 2m − |R| ≤ n vertices. Now, by averaging
over a uniformly random choice of the root R we deduce an inequality of the form

q
vQvT

y
=
∑

H∈Gn
cHH ≥ 0 (3)

for some coefficients cH depending on the root R, the integer m and the used positive
semidefinite matrix Q.

Using it we obtain

g ≤
∑

H∈Gn
(gH + cH)H ≤ max

H
(gH + cH)

∑

H∈Gn
= max

H
(gH + cH . (4)

Since some of the coefficients cH may be negative, for an appropriate choice of the root R,
the order m and the positive semidefinite matrix Q, we can obtain a much better bound
than the trivial one g ≤ maxH gH . Furthermore, we can consider t choices of (Ri,mi, Qi),
where each Ri is a labeled graph, each mi ≤ (n + |Ri|)/2 is an integer, and each Qi is
a positive semidefinite matrix of dimension |GRi

mi
| × |GRi

mi
|. Defining the coefficients cH as

the sum of the coefficients obtained for each such triple, we infer a similar bound.
Therefore, we are left with the problem to minimize the bound maxH(gH+cH) from (4)

over all positive semidefinite matrices Qi used in the determination of the coefficients cH .
An upshot of the method is that this can be stated as a semidefinite programming problem
(SDP): given any particular choice of the roots Ri and orders mi, find positive semidefinite
matrices Qi that minimize maxH(gH + cH) in (4). Later we explain how one can set up
an SDP solver.

Before we state this as a semidefinite problem, let us see how it works on a specific
example. We will once again prove Mantel’s theorem, i.e., find the best upper bound
for the density of g = in a class of triangle-free graphs. We use n = 3, express as
1
3

+ 2
3

, consider the root R consisting of a single labeled vertex and take the vector
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v of all flags on m = 2 vertices, i.e., v = ( , ). Our task now is to find the smallest
possible upper bound for

1

3
+

2

3
+

q
( , )Q( , )T

y
,

where Q is some positive semidefinite matrix of size 2× 2. Denoting the entries of Q by
qij we obtain

q
( , )Q( , )T

y
= q00 J · K + 2q01 J · K + q11 J · K
= q00 J + K + q01 J + K + q11 J K

= q00

(
+

1

3

)
+ q01

(
2

3
+

2

3

)
+ q11

(
1

3

)

= q00 +

(
1

3
q00 +

2

3
q01

)
+

(
2

3
q01 +

1

3
q11

)
.

Altogether, we deduce that 1
3

+ 2
3

+
q
( , )Q( , )T

y
is equal to

q00 +

(
1

3
+

1

3
q00 +

2

3
q01

)
+

(
2

3
+

2

3
q01 +

1

3
q11

)
,

which is at most

max

{
q00,

1

3
+

1

3
q00 +

2

3
q01,

2

3
+

2

3
q01 +

1

3
q11

}
( + + ) .

Therefore, our final task is to minimize

max

{
q00,

1

3
+

1

3
q00 +

2

3
q01,

2

3
+

2

3
q01 +

1

3
q11

}
(5)

over all positive semidefinite matrices of size 2 × 2, which can be done by semidefinite
programming.

2.2 Setting up the SDP

For fixed real symmetric matrices C,A1, A2, . . . , Ak of size N × N and a vector b =
(b1, b2, . . . , bk), the semidefinite programming problem (SDP) is a problem of the form

max Tr(CX)

subject to Tr(AiX) = bi, for i ∈ {1, 2, . . . , k}, and

X is positive semidefinite.

Such form is used by SDP solvers available online, like CSDP.
In order to express our minimization problem in (4) as an instance of SDP we take N

equal to 1 + |Gn|+ |GRm| and consider k := |Gn| symmetric matrices A1, A2, . . . , Ak and a
matrix C, each consisting of 3 blocks: a 1 × 1 block, a diagonal block of size |Gn| and a
block of size |GRm| × |GRm|. In the matrix C we set the only entry of the first block to −1
and everything else to 0. For each graph Hi in Gn we create one matrix Ai by setting the
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entry in the first block to −1, the diagonal entry on position i in the second block to 1,
and the values coming from

q
vQvT

y
in the third block. As we assume that Q is positive

semidefinite, in particular symmetric, we can put the corresponding values of
q
vQvT

y

also symmetrically. Finally, for i ∈ [|Gn|] let the value of bi be equal to −gH , where H is
the i-th graph in Gn.

Let us denote the entries of the matrix X by x0 in the first block, by xi for i ∈ [k]
in the second diagonal block, and by qij for i, j ∈ [|GRm|]} in the last block forming the
matrix Q. The condition that X is positive semidefinite is equivalent to saying that the
matrix Q is positive semidefinite and xi ≥ 0 for i ∈ {0, 1, 2, . . . , k}.

By this assignment, the SDP objective function max Tr(CX) is just maximizing −x0,
so minimizing x0. For the i-th graph H ∈ Gn, the assumption Tr(AiX) = bi turns into
the equality −x0 + xi + cH = −gH , which means that x0 ≥ gH + cH as xi ≥ 0. This
is exactly saying that x0 is the upper bound for the value of maxH∈Gn(gH + cH) in (4).
Thus, the SDP is indeed minimizing the wanted upper bound.

In our example, we have N = 1 + 3 + 2 = 6, k = 3, the matrices

C =




−1
0

0
0

0 0
0 0



, A1 =




−1
1

0
0

1 0
0 0




A2 =




−1
0

1
0

1
3

1
3

1
3

0



, A3 =




−1
0

0
1

0 1
3

1
3

1
3




and the vector b = (0,−1
3
,−2

3
).

With this assignment, the objective function max Tr(CX) turns into minimization of
x0, while the assumptions Tr(AiX) = bi translate into





−x0 + x1 + q00 = 0

−x0 + x2 +
1

3
q00 +

2

3
q01 = −1

3

−x0 + x3 +
2

3
q01 +

1

3
q11 = −2

3
.

(6)

Using xi ≥ 0, it gives

max

{
q00,

1

3
+

1

3
q00 +

2

3
q01,

2

3
+

2

3
q01 +

1

3
q11

}
≤ x0.

Thus, our SDP is indeed minimizing the expression (5), as wanted.
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