Notice that in general the quantities $\llbracket a \cdot b \rrbracket$ and $\llbracket a \rrbracket \cdot \llbracket b \rrbracket$ for $a, b \in \mathcal{A}^{R}$ can differ significantly, even if $a=b$. For example, for the previously considered graphon $U=\mp$ we have

$$
\llbracket \ell \cdot \Omega \rrbracket=\llbracket ソ+\nabla \rrbracket=\frac{1}{3} \Lambda+\boldsymbol{\Lambda}=\frac{1}{3},
$$

while

$$
\llbracket \delta \rrbracket^{2}=\boldsymbol{\delta}^{2}=\frac{25}{81} .
$$

A general and useful bound is the following Cauchy-Schwarz inequality for flags.
Theorem 5. For any labeled graph R and any flags $a, b \in \mathcal{A}^{R}$

$$
\llbracket a \cdot b \rrbracket^{2} \leq \llbracket a^{2} \rrbracket \cdot \llbracket b^{2} \rrbracket .
$$

In particular

$$
\llbracket a \rrbracket^{2} \leq \llbracket a^{2} \rrbracket \cdot \llbracket R \rrbracket .
$$

To illustrate the just introduced concepts, we prove Mantel's theorem, which for graphons says that $\boldsymbol{\Delta}=0$ implies $\boldsymbol{\ell} \leq \frac{1}{2}$. Starting with an inequality $\llbracket(\cdot-\boldsymbol{\delta})^{2} \rrbracket \geq 0$, valid because a square is always non-negative, we obtain

$$
\begin{aligned}
& =\llbracket \because+\because-\because-\nabla+\bigvee+\nabla \rrbracket \\
& =\therefore+\frac{1}{3} \therefore-\frac{2}{3} \therefore-\frac{2}{3} \boldsymbol{} \text { + } \frac{1}{3} \boldsymbol{\wedge}+\boldsymbol{\Delta} \\
& =\therefore-\frac{1}{3} \therefore-\frac{1}{3} \boldsymbol{\Lambda}+\Delta \text {. }
\end{aligned}
$$

Dividing this inequality by 2 and adding to the equality $\boldsymbol{\ell}=\frac{1}{3} \dot{\boldsymbol{\bullet}}+\frac{2}{3} \boldsymbol{\boldsymbol { \delta }}+\boldsymbol{\Delta}$ we get

$$
\boldsymbol{\delta} \leq \frac{1}{2} \therefore+\frac{1}{6} \dot{\therefore}+\frac{1}{2} \boldsymbol{\wedge}+\frac{3}{2} \Delta \leq \frac{1}{2}(\therefore+\therefore+\boldsymbol{\therefore}+\boldsymbol{\Delta})+\boldsymbol{\Delta},
$$

which for $\boldsymbol{\Delta}=0$ implies that $\boldsymbol{\delta} \leq \frac{1}{2}$ as needed.
The above prove shows Mantel's theorem only for graphons, but one can obtain from it a proof of Mantel's theorem for all graphs. Assume that there exists a counterexample to Mantel's theorem, i.e., a k-vertex graph G that does not contain triangles and has at least $\frac{k^{2}+1}{4}$ edges. Consider a sequence $G[n]$ of blow-ups of G. Each graph $G[n]$ does not contain triangles, has $k n$ vertices and at least $\frac{k^{2}+1}{4} n^{2}$ edges, so its edge density is at least $\frac{k^{2}+1}{2 k^{2}}$. From compactness, this sequence of graphs contains a convergent subsequence (one can even show that it is convergent by itself) whose limiting graphon has triangle density equal to 0 and edge density strictly larger than $\frac{1}{2}$, which contradicts the proven Mantel's theorem for graphons.

Additionally, observe that it follows from the proof that the equality in Mantel's theorem implies $\therefore=0$ and $\bullet=\boldsymbol{\ell}$, which means that the extremal graphon corresponds to sequence of complete bipartite graphs which are regular (up to lower error terms).

The crucial ingredient used in the proof of Mantel's theorem was the inequality $\frac{1}{2} \llbracket(\cdot-\boldsymbol{\ell})^{2} \rrbracket \geq 0$ expressed as inequality on flags on 3 vertices. One may wonder why exactly this inequality was used. The important advantage of applying flag algebra is the fact that one can use computer optimization in order to find inequalities giving the best estimate. We will briefly explain the idea behind this approach.

2.1 Automatic approach

We focus on maximizing some linear expression of flags g in some graph class \mathcal{G}. For example, in Mantel's theorem $g=\boldsymbol{\ell}$ and \mathcal{G} is a class of triangle-free graphs, while in Goodman's theorem $g=1-\boldsymbol{\Delta}-\therefore$ and \mathcal{G} is a class of all graphs (we have the minus sign here, because we want to find the minimum, not the maximum of $\boldsymbol{\Delta}+\therefore$).

Let us fix some integer n (at least of the size of the largest graph in g) and denote by \mathcal{G}_{n} the family of all graphs in \mathcal{G} on n vertices up to isomorphism. If n is not too large, then we can generate all flags in \mathcal{G}_{n} and express g using identity (1) as $g=\sum_{H \in \mathcal{G}_{n}} g_{H} H$. In order to find a useful inequality, as in the discussed example, consider a labeled graph R, a vector v composed of all possible flags $F_{i} \in \mathcal{G}_{m}^{R}$ of order $m \leq(n+|R|) / 2$, and assign some real coefficients $q_{i j}$ to each pair of these flags. If the matrix $Q=\left(q_{i j}\right)_{F_{i}, F_{j} \in \mathcal{G}_{m}^{R}}$ is positive semidefinite, then the inequality

$$
v Q v^{T}=\sum_{F_{i}, F_{j} \in \mathcal{G}_{m}^{R}} q_{i j} F_{i} \cdot F_{j} \geq 0
$$

holds for each choice of $|R|$ labeled vertices. Using the definition of multiplication (2) we obtain a linear inequality on rooted flags on $2 m-|R| \leq n$ vertices. Now, by averaging over a uniformly random choice of the root R we deduce an inequality of the form

$$
\begin{equation*}
\llbracket v Q v^{T} \rrbracket=\sum_{H \in \mathcal{G}_{n}} c_{H} H \geq 0 \tag{3}
\end{equation*}
$$

for some coefficients c_{H} depending on the root R, the integer m and the used positive semidefinite matrix Q.

Using it we obtain

$$
\begin{equation*}
g \leq \sum_{H \in \mathcal{G}_{n}}\left(g_{H}+c_{H}\right) H \leq \max _{H}\left(g_{H}+c_{H}\right) \sum_{H \in \mathcal{G}_{n}}=\max _{H}\left(g_{H}+c_{H} .\right. \tag{4}
\end{equation*}
$$

Since some of the coefficients c_{H} may be negative, for an appropriate choice of the root R, the order m and the positive semidefinite matrix Q, we can obtain a much better bound than the trivial one $g \leq \max _{H} g_{H}$. Furthermore, we can consider t choices of $\left(R_{i}, m_{i}, Q_{i}\right)$, where each R_{i} is a labeled graph, each $m_{i} \leq\left(n+\left|R_{i}\right|\right) / 2$ is an integer, and each Q_{i} is a positive semidefinite matrix of dimension $\left|\mathcal{G}_{m_{i}}^{R_{i}}\right| \times\left|\mathcal{G}_{m_{i}}^{R_{i}}\right|$. Defining the coefficients c_{H} as the sum of the coefficients obtained for each such triple, we infer a similar bound.

Therefore, we are left with the problem to minimize the bound $\max _{H}\left(g_{H}+c_{H}\right)$ from (4) over all positive semidefinite matrices Q_{i} used in the determination of the coefficients c_{H}. An upshot of the method is that this can be stated as a semidefinite programming problem (SDP): given any particular choice of the roots R_{i} and orders m_{i}, find positive semidefinite matrices Q_{i} that minimize $\max _{H}\left(g_{H}+c_{H}\right)$ in (4). Later we explain how one can set up an SDP solver.

Before we state this as a semidefinite problem, let us see how it works on a specific example. We will once again prove Mantel's theorem, i.e., find the best upper bound for the density of $g=\boldsymbol{\zeta}$ in a class of triangle-free graphs. We use $n=3$, express $\boldsymbol{\zeta}$ as $\frac{1}{3} \dot{\therefore}+\frac{2}{3} \boldsymbol{\wedge}$, consider the root R consisting of a single labeled vertex and take the vector
v of all flags on $m=2$ vertices, i.e., $v=\left(\circ^{\bullet}, \boldsymbol{J}\right)$. Our task now is to find the smallest possible upper bound for

$$
\frac{1}{3} \therefore+\frac{2}{3} \wedge+\llbracket(\cdot, \delta) Q(\cdot \cdot, \delta)^{T} \rrbracket
$$

where Q is some positive semidefinite matrix of size 2×2. Denoting the entries of Q by $q_{i j}$ we obtain

$$
\begin{aligned}
& \llbracket(\cdot \cdot \boldsymbol{\circ}) Q\left(\circ^{\bullet}, \boldsymbol{\delta}\right)^{T} \rrbracket=q_{00} \llbracket \cdot \cdot \cdot \square+2 q_{01} \llbracket \cdot \cdot \boldsymbol{\circ} \rrbracket+q_{11} \llbracket \boldsymbol{\delta} \cdot \boldsymbol{\delta} \rrbracket \\
& =q_{00} \llbracket \because+\cdots \rrbracket+q_{01} \llbracket \because \because \square \square \rrbracket+q_{11} \llbracket \cup \rrbracket \\
& =q_{00}\left(\therefore+\frac{1}{3} \dot{\therefore}\right)+q_{01}\left(\frac{2}{3} \dot{\therefore}+\frac{2}{3} \boldsymbol{\wedge}\right)+q_{11}\left(\frac{1}{3} \boldsymbol{\wedge}\right) \\
& =q_{00} \therefore+\left(\frac{1}{3} q_{00}+\frac{2}{3} q_{01}\right) \therefore+\left(\frac{2}{3} q_{01}+\frac{1}{3} q_{11}\right) \AA .
\end{aligned}
$$

Altogether, we deduce that $\frac{1}{3} \dot{\bullet}+\frac{2}{3} \boldsymbol{\delta}+\llbracket\left(\bullet^{\bullet}, \boldsymbol{\delta}\right) Q\left({ }^{\bullet}, \boldsymbol{\delta}\right)^{T} \rrbracket$ is equal to

$$
q_{00} \therefore+\left(\frac{1}{3}+\frac{1}{3} q_{00}+\frac{2}{3} q_{01}\right) \therefore+\left(\frac{2}{3}+\frac{2}{3} q_{01}+\frac{1}{3} q_{11}\right) \boldsymbol{\curlywedge}
$$

which is at most

$$
\max \left\{q_{00}, \frac{1}{3}+\frac{1}{3} q_{00}+\frac{2}{3} q_{01}, \frac{2}{3}+\frac{2}{3} q_{01}+\frac{1}{3} q_{11}\right\}(\therefore+\therefore+\boldsymbol{\wedge}) .
$$

Therefore, our final task is to minimize

$$
\begin{equation*}
\max \left\{q_{00}, \frac{1}{3}+\frac{1}{3} q_{00}+\frac{2}{3} q_{01}, \frac{2}{3}+\frac{2}{3} q_{01}+\frac{1}{3} q_{11}\right\} \tag{5}
\end{equation*}
$$

over all positive semidefinite matrices of size 2×2, which can be done by semidefinite programming.

2.2 Setting up the SDP

For fixed real symmetric matrices $C, A_{1}, A_{2}, \ldots, A_{k}$ of size $N \times N$ and a vector $b=$ $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, the semidefinite programming problem (SDP) is a problem of the form

$$
\begin{aligned}
\max & \operatorname{Tr}(C X) \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \text { for } i \in\{1,2, \ldots, k\} \text {, and } \\
& X \text { is positive semidefinite. }
\end{aligned}
$$

Such form is used by SDP solvers available online, like CSDP.
In order to express our minimization problem in (4) as an instance of SDP we take N equal to $1+\left|\mathcal{G}_{n}\right|+\left|\mathcal{G}_{m}^{R}\right|$ and consider $k:=\left|\mathcal{G}_{n}\right|$ symmetric matrices $A_{1}, A_{2}, \ldots, A_{k}$ and a matrix C, each consisting of 3 blocks: a 1×1 block, a diagonal block of size $\left|\mathcal{G}_{n}\right|$ and a block of size $\left|\mathcal{G}_{m}^{R}\right| \times\left|\mathcal{G}_{m}^{R}\right|$. In the matrix C we set the only entry of the first block to -1 and everything else to 0 . For each graph H_{i} in \mathcal{G}_{n} we create one matrix A_{i} by setting the
entry in the first block to -1 , the diagonal entry on position i in the second block to 1 , and the values coming from $\llbracket v Q v^{T} \rrbracket$ in the third block. As we assume that Q is positive semidefinite, in particular symmetric, we can put the corresponding values of $\llbracket v Q v^{T} \rrbracket$ also symmetrically. Finally, for $i \in\left[\left|\mathcal{G}_{n}\right|\right]$ let the value of b_{i} be equal to $-g_{H}$, where H is the i-th graph in \mathcal{G}_{n}.

Let us denote the entries of the matrix X by x_{0} in the first block, by x_{i} for $i \in[k]$ in the second diagonal block, and by $q_{i j}$ for $\left.i, j \in\left[\left|\mathcal{G}_{m}^{R}\right|\right]\right\}$ in the last block forming the matrix Q. The condition that X is positive semidefinite is equivalent to saying that the matrix Q is positive semidefinite and $x_{i} \geq 0$ for $i \in\{0,1,2, \ldots, k\}$.

By this assignment, the SDP objective function max $\operatorname{Tr}(C X)$ is just maximizing $-x_{0}$, so minimizing x_{0}. For the i-th graph $H \in \mathcal{G}_{n}$, the assumption $\operatorname{Tr}\left(A_{i} X\right)=b_{i}$ turns into the equality $-x_{0}+x_{i}+c_{H}=-g_{H}$, which means that $x_{0} \geq g_{H}+c_{H}$ as $x_{i} \geq 0$. This is exactly saying that x_{0} is the upper bound for the value of $\max _{H \in \mathcal{G}_{n}}\left(g_{H}+c_{H}\right)$ in (4). Thus, the SDP is indeed minimizing the wanted upper bound.

In our example, we have $N=1+3+2=6, k=3$, the matrices

$$
\begin{array}{ll}
C=\left(\begin{array}{cccccc}
-1 & & & & & \\
& 0 & & & & \\
& & 0 & & & \\
& & & 0 & & \\
& & & & 0 & 0 \\
& & & & 0 & 0
\end{array}\right), \quad A_{1}=\left(\begin{array}{cccccc}
-1 & & & & & \\
& 1 & & & & \\
& & 0 & & & \\
& & & 0 & & \\
& & & & 1 & 0 \\
& & & & 0 & 0
\end{array}\right) \\
A_{2} & =\left(\begin{array}{llllll}
-1 & & & & & \\
& 0 & & & & \\
& & 1 & & & \\
& & & 0 & & \\
& & & & \frac{1}{3} & \frac{1}{3} \\
& & & & \frac{1}{3} & 0
\end{array}\right), \quad A_{3}=\left(\begin{array}{cccccc}
-1 & & & & \\
& 0 & & & \\
& & 0 & & \\
& & & 1 & & \\
& & & & 0 & \frac{1}{3} \\
& & & & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
\end{array}
$$

and the vector $b=\left(0,-\frac{1}{3},-\frac{2}{3}\right)$.
With this assignment, the objective function max $\operatorname{Tr}(C X)$ turns into minimization of x_{0}, while the assumptions $\operatorname{Tr}\left(A_{i} X\right)=b_{i}$ translate into

$$
\left\{\begin{align*}
-x_{0}+x_{1}+q_{00} & =0 \tag{6}\\
-x_{0}+x_{2}+\frac{1}{3} q_{00}+\frac{2}{3} q_{01} & =-\frac{1}{3} \\
-x_{0}+x_{3}+\frac{2}{3} q_{01}+\frac{1}{3} q_{11} & =-\frac{2}{3}
\end{align*}\right.
$$

Using $x_{i} \geq 0$, it gives

$$
\max \left\{q_{00}, \frac{1}{3}+\frac{1}{3} q_{00}+\frac{2}{3} q_{01}, \frac{2}{3}+\frac{2}{3} q_{01}+\frac{1}{3} q_{11}\right\} \leq x_{0}
$$

Thus, our SDP is indeed minimizing the expression (5), as wanted.

