
2 Flag algebras

Let denote by G the set of all graphs (in general it can be any “reasonable” class of
discrete structures) and by Gn the set of graphs on n vertices. Consider the set RG of
finite linear combinations of graphs with real coefficients with the natural operations of
addition and multiplication by a scalar. For a graphon W define a homomorphism fW
from RG to R by setting

fW

(∑

i∈I
αiHi

)
=
∑

i∈I
αid(Hi,W )

for every element
∑

i∈I αiHi of RG. It is straightforward to verify that fW is indeed a
homomorphism from RG to R.

Observe that for every graph H and every integer n ≥ |H|, it holds that

d(H,W ) =
∑

G∈Gn
d(H,G)d(G,W ). (1)

This identity just says that the probability that the W -random graph of order |H| is
isomorphic to H is equal to the probability that the graph obtained from the W -random
graph of order n by removing random n− |H| vertices is isomorphic to H, which follows
from the definition of a W -random graph. This identity implies that

fW

(
H −

∑

G∈Gn
d(H,G)G

)
= 0

for every graph H and every integer n ≥ |H|. Let A0 be the the linear subspace of RG
generated by elements

H −
∑

G∈Gn
d(H,G)G

for all graphs H and all n ≥ |H|, and let A be the algebra RG factored by A0, i.e., the
algebra A is formed by the equivalence classes of the form a + A0 for a ∈ RG. Since
fW (a) = 0 for all a ∈ A0, the homomorphism fW yields a homomorphism from A to R.

Slightly abusing the notation, we will think of the elements of A as formal linear
combinations of graphs with real coefficients and consider those belonging to the same
equivalence class as equal. For brevity, we will also identify a ∈ A with fW (a), where W
is any graphon. For example, since

fW ( ) = d( ,W ) =
1

3
d( ,W ) +

2

3
d( ,W ) + d( ,W ) = fW

(
1

3
+

2

3
+

)

holds for every graphon W , we briefly write

=
1

3
+

2

3
+ .

We want to define an operation of multiplication on the elements of A in a way that
fW (a · b) = fW (a)fW (b) for any a, b ∈ A, i.e., the mapping fW stays a homomorphism.
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Consider two graphs H1 and H2. Observe that if we take the W -random graph of order
|H1|+|H2|, consider its induced subgraphs arising from a random choice of disjoint subsets
of |H1| and |H2| vertices, then we get the W -random graphs of orders |H1| and |H2|. It
follows that

d(H1,W )d(H2,W ) =
∑

G∈G|H1|+|H2|

d(H1, H2, G)d(G,W ),

where d(H1, H2, G) denotes the probability that a random partition of the vertex set of G
into sets of |H1| and |H2| vertices is such that the subgraph of G induced by the first set
is H1 and the subgraph induced by the second set is H2. In other words, d(H1, H2, G) is
the number of such partitions divided by the number of all partitions. Hence, we define

H1 ·H2 =
∑

G∈G|H1|+|H2|

d(H1, H2, G)G

for any two graphs H1 and H2 and linearly extend it to RG and A. For example, it holds
that

· =
1

6
+

1

3
+

1

6
+

1

2
+

1

2
+

1

3
+

1

6
.

We now want to extend this concept to partially labeled graphs, so called rooted
graphs, where some of the vertices are distinguishable. Consider a labeled graph R,
called root, and let GR be the set of all graphs with |R| labeled vertices such that the
labeled vertices induce the graph R, and let GRn for n ≥ |R| be the set of all graphs in GR
of order n. The elements of GR will be depicted in a way that labeled vertices are drawn
with empty circles and other vertices with full circles, moreover, vertices with the same
label will be always drawn at the same position. For example, the graphs and
contained in G3 are different graphs.

Consider a labeled graph R with vertices r1, . . . , rk, a graphon W having positive
density of R with disregarded labels, and x1, . . . , xk ∈ [0, 1]. If the probability that the
W -random graph of order k with r1, . . . , rk chosen as x1, . . . , xk ∈ [0, 1] is R is positive,
then we set fx1,...,xkW (H) for H ∈ GR to be the probability that the W -random graph of
order |H| is H conditioned on the vertices r1, . . . , rk being chosen to be x1, . . . , xk and the
graph sampled on these vertices being R. We linearly extend fx1,...,xkW from GR to RGR.
Finally, we define fRW as the probability distribution of functions fx1,...,xkW under condition
that x1, . . . , xk forms R. As an example consider the graphon U = and observe that
f
1/6,1/6
U ( ) = 1/3, f

2/3,2/3
U ( ) = 2/3, while fU ( ) = 1/3 with probability 1/5 and

fU ( ) = 2/3 with probability 4/5. In any expressions involving fRW we keep the same

roots, for example we write fU( ) + fU( ) = 1.
Extending the definition of density of graphs, for two rooted graphs G and H in GR we

define d(H,G) as the probability that random |H| − |R| unlabeled vertices of G together
with R form the graph H. Observe that for every graphon W , labeled graph R, H ∈ GR
and n ≥ |H| it holds

fRW (H) =
∑

G∈GRn

d(H,G)fRW (G).

Hence, similarly as for unrooted graphs, we consider the subspace AR0 of RGR generated
by H −∑G∈GRn d(H,G)G for all H ∈ GR and n ≥ |H|, and define AR to be RGR factored

by AR0 . Note that AR may be viewed as A if R is a graph without vertices.
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We next define multiplication on elements of AR in a way analogous to those for
unrooted graphs. If H1, H2 and G from GR are such graphs that |G| = |H1|+ |H2| − |R|,
we define d(H1, H2, G) to be the probability that a random partition of the unlabeled
vertices of G to sets of sizes |H1| − |R| and |H2| − |R| is such that the first set together
with R induces H1 and the second set together with R induces H2. We set

H1 ·H2 =
∑

G∈GR|H1|+|H2|−|R|

d(H1, H2, G)G (2)

for any two graphs H1 and H2 from GR and linearly extend it to RGR and A. For example,
it holds that

· =
1

2
+

1

2
.

The defined algebra on AR is called flag algebra and its elements are called flags. Note
that it coincides with the definition of A if R is a graph without vertices.

Our goal now is to define a linear mapping J·K from AR to A that corresponds to
averaging over all possible placements of the roots that forms R, i.e., for every a ∈ AR
and graphon W with d(R0,W ) > 0 satisfying

fW (JaK) = fW (JRK)EfRW (a).

For a graph H ∈ GR, let H0 ∈ G be the graph obtained from H by unlabeling the vertices
of R. We define q(H) to be the probability that choosing the vertices of R randomly
among the vertices of H0 yields H. Formally speaking,

q(H) =
(|H| − |R|)!
|H|! · |Aut(H0)|

|Aut(H)| .

We set
JHK = q(H)H0

and linearly extend it to RGR. For example, J K = 2
3

and J K = 1
3

. It is easy to
see that J·K is well defined as a mapping from AR to A. Note that for every H ∈ GR and
graphon W with d(R0,W ) > 0 it holds

fW (JRK)EfRW (H) =
(|H| − |R|)!
|Aut(H)|

∫

[0,1]|H|

∏

vivj∈E(H)

W (xi, xj)
∏

vivj 6∈E(H)

(1−W (xi, xj)) dx1 · · · dx|H|

=
(|H| − |R|)!
|H|! · |Aut(H0)|

|Aut(H)| · d(H0,W )

= q(H)d(H0,W ) = fW (JHK)

as wanted.
Similarly as for unrooted graphs, we identify H ∈ AR with fRW (H). In particular,

for a ∈ AR and x ∈ R we write a ≥ x if fRW (a) ≥ x holds with probability 1 for every
graphon W such that fRW is defined (d(R0,W ) > 0). From linearity of expectation it
holds that if a ≥ 0, then JaK ≥ 0. Similarly, if a = 0, then JaK = 0, and more generally,
if a = x or a ≥ x, then JaK = x JRK or JaK ≥ x JRK, respectively.
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