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We start by fixing the general notation. Unless specified otherwise, all graphs that
we consider are undirected and simple. If G is a graph, we write V (G) for its vertex set
and E(G) for its edge set. The order of G, i.e., the number of its vertices, is denoted by
|G| and the size of G, i.e., the number of its edges, is denoted by e(G). The set of the
first k positive integers is denoted by [k].

1 Graph limits

The theory of graph limits was developed in a series of papers by Borgs, Chayes, Lovász,
Sós, Szegedy and Vesztergombi. Here we only focus on the case of dense graph conver-
gence and their limits, which is the one relevant to the flag algebra method. The theory
of graph limits aims at capturing properties of large graphs. To do so, we first define a
notion of convergence of a sequence of graphs and then define an analytic object repre-
senting the limit of a convergent sequence. It is possible to talk about convergence of a
certain kind of combinatorial objects without having any particular limit representation
in mind and the flag algebra method can also be applied in such scenarios.

We define a density of a graph H in a graph G, denoted by d(H,G), as the probability
that randomly chosen subset of |H| vertices of G induces a graph isomorphic to H, i.e.,
d(H,G) is equal to the number of induced copies of H in G divided by

(|G|
|H|
)
. We say

that a sequence of graphs (Gn)n∈N of growing orders is convergent if for every graph H
the sequence of densities d(H,Gn) is convergent.

Examples of convergence sequences are complete graphs Kn, complete bipartite graphs
with fixed ratio of part sizes, or Erdős-Renyi random graphsG(n, p) for fixed probability p,
which is convergent with probability 1.

Note that an arbitrary sequence of graphs with o(n2) edges is convergent, so this
notion is meaningful only for dense graphs. There are various notions of convergence of
bounded degree graphs and results covering the sparse and mixed regimes. More details
can be found in the book Large Networks and Graph Limits by Lovász.

An equivalent way of defining the convergence is through homomorphisms. The ho-
momorphism density of H in G, denoted by t(H,G), is the probability that a random
mapping from the vertices of H to the vertices of G is a homomorphism. It is not hard
to show that a sequence of graphs (Gn)n∈N is convergent if and only if the sequence of
homomorphism densities t(H,Gn) converges for every graph H.

The limit of a convergent sequence of graphs is represented by an analytic object called
a graphon. Formally, a graphon is a symmetric measurable function W : [0, 1]2 → [0, 1],
where symmetric stands for the property that W (x, y) = W (y, x) for all x, y ∈ [0, 1].

A W -random graph of order n is the random graph obtained by sampling n points
x1, . . . , xn independently and uniformly in the unit interval [0, 1] and joining the i-th
vertex and the j-th vertex of the graph by an edge with probability W (xi, xj). Note that
if W is the constant graphon equal to p ∈ [0, 1], then the W -random graph of order n is the
Erdős-Rényi random graph G(n, p). The density of a graph H in a graphon W , denoted
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by d(H,W ), is the probability that the W -random graph of order |H| is isomorphic to H.
The definition of the W -random graph readily yields that

d(H,W ) =
|H|!

|Aut(H)|

∫

[0,1]|H|

∏

vivj∈E(H)

W (xi, xj)
∏

vivj 6∈E(H)

(1−W (xi, xj)) dx1 · · · dx|H|,

where V (H) = {v1, . . . , v|H|} and Aut(H) is the automorphism group of H.
We can think of the interval [0, 1] as the set of vertices, and of the value W (x, y) as the

weight of the edge xy. Then the formula above is an infinite analogue of weighted density.
Intuitively, one can also think of a graphon as an infinite analogue of the adjacency matrix.

We say that a graphon W is a limit of a convergent sequence (Gn)n∈N of graphs if

d(H,W ) = lim
n→∞

d(H,Gn) for every graph H.

Figure 1: Graphons that are limits of the convergent sequences (Kn)n∈N, (Kn,n)n∈N,
(Kn,2n)n∈N and (G(n, 1/2))n∈N, respectively. We use white for value 0, black for 1 and
shades of grey for the intermediate values. The origin is in the top left corner.

For any graphon W , a rather straightforward application of the Azuma-Hoeffding
inequality yields that the sequence of W -random graph of order n is convergent and W
is its limit. Hence, every graphon is a limit of a convergent sequence of graphs. Showing
that every convergent sequence of graphs has a limit graphon is more involved.

Theorem 1 (Lovász, Szegedy, 2006). For every convergent sequence of graphs there exists
a graphon that is a limit of this sequence.

Notice that the limit is not unique, because if we consider any measure preserving map
ϕ : [0, 1] → [0, 1], then the graphon Wϕ defined as Wϕ(x, y) = W (ϕ(x), ϕ(y)) has the
same density of any subgraph H as a graphon W . For example, the two graphons depicted
in Figure 2 are both limits of the same convergent sequence (Gn)n∈N of graphs where
Gn = Kn,n. We say that graphons U and W are weakly isomorphic if d(H,U) = d(H,W )
for every graph H, i.e., the graphons U and W are limits of the same sequences of graphs.

Figure 2: Two weakly isomorphic graphons.

The following result gives a characterization of weakly isomorphic graphons.

Theorem 2 (Borgs, Chayes, Lovász, 2010). Two graphons U and W are weakly isomor-
phic if and only if there exist measure preserving maps ϕ, ψ : [0, 1] → [0, 1] such that
Uϕ = Wψ almost everywhere.
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A kernel is a symmetric measurable function W : [0, 1]2 → R. In order to say that
two graphons (or kernels) are close to each other, we define the cut norm on the space of
kernels by

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∣
∫

S×T
W (x, y) dx dy

∣∣∣∣ ,

where the supremum is taken over all measurable subsets S and T . It is easy to verify
that indeed it is a norm. It also defines a cut metric by d�(U,W ) = ‖U −W‖� for any
graphons U and W .

We still need to consider all possible changes of the graphon by measure preserving
maps (somewhat equivalent to permuting vertices of a graph). Therefore, we consider the
set S[0,1] of all measure preserving maps [0, 1] → [0, 1] and the set S[0,1] of all invertible
measure preserving maps [0, 1]→ [0, 1]. We define the cut distance of two graphons by

δ�(U,W ) = inf
ϕ∈S[0,1]

d�(U,Wϕ).

It is easy to verify that

δ�(U,W ) = inf
ϕ∈S[0,1]

d�(Uϕ,W ) = inf
ϕ∈S[0,1]

d�(U,Wϕ) = inf
ϕ,ψ∈S[0,1]

d�(Uψ,Wϕ).

An important property of the cut distance is the following theorem.

Theorem 3 (Borgs, Chayes, Lovász, Sós, Vesztergombi, 2008). Two graphons U and W
are weakly isomorphic if and only if δ�(U,W ) = 0.

Identifying weakly isomorphic graphons we get the set W̃0 of unlabeled graphons. The
above theorem gives that the cut distance is a metric on W̃0. The crucial fact is that this
space is compact.

Theorem 4 (Lovász, Szegedy, 2007). The space W̃0 with metric δ� is compact.
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