## Graph limits and flag algebras

Exercises - set 2

Problem 1. Calculate $d(\curlyvee, \nabla),\ulcorner\cdot \delta$ and $\llbracket 『 \rrbracket$.
Problem 2. Using the inequality $\llbracket\left(\Omega-{ }^{\bullet}\right)^{2} \rrbracket \geq 0$ prove that $\boldsymbol{\Delta}+\therefore \geq 1 / 4$.
Problem 3. Consider a convergent sequence of graphs, where vertices of each $n$-vertex graph are of degree $n / 3+o(n)$ or $2 n / 3+o(n)$. Prove that the limiting graphon satisfies $\therefore+\Delta=1 / 3$.

Problem 4. Using the inequality $\llbracket \boldsymbol{\delta}^{2} \rrbracket \geq \llbracket \boldsymbol{\delta} \rrbracket^{2}$ prove that $\boldsymbol{\mathcal { A }} \geq \boldsymbol{\zeta}(2 \boldsymbol{\zeta}-1)$.
Problem 5. Using the previous problem, show that any graph on $n$ vertices and $e$ edges contains at least $e\left(4 e-n^{2}\right) / 3 n$ triangles.

Problem 6. Prove the inequality $\therefore \leq 3 \Delta+3 / 8$ and argue that any extremal graph satisfies $\delta=1 / 4$ for almost all possible placements of the root.

Problem 7. Prove that $\boldsymbol{\Delta}^{2} \leq \boldsymbol{\sigma}^{3}$ and deduce the extremal examples.
Problem 8. Prove that for every integer $k \geq 2$ it holds $K_{k+1} \geq(k \not-(k-1)) K_{k}$. Using it deduce Turán's theorem that any $n$-vertex graph without $K_{k+1}$ contains at most $\left(1-\frac{1}{k}\right) \frac{n^{2}}{2}$ edges.

