Graph limits and flag algebras Exercises – set 2

Problem 1. Calculate $d(\mathbf{V}, \mathbf{V}), \mathbf{\nabla} \cdot \mathbf{J}$ and $\llbracket \mathbf{V}^{\mathbf{V}} \rrbracket$.

Problem 2. Using the inequality $[(\mathcal{J} - \mathbf{0}^{\bullet})^2] \ge 0$ prove that $\mathbf{A} + \mathbf{0}^{\bullet} \ge 1/4$.

Problem 3. Consider a convergent sequence of graphs, where vertices of each *n*-vertex graph are of degree n/3 + o(n) or 2n/3 + o(n). Prove that the limiting graphon satisfies $\therefore + \Delta = 1/3$.

Problem 4. Using the inequality $\llbracket \mathcal{J}^2 \rrbracket \ge \llbracket \mathcal{J} \rrbracket^2$ prove that $\Delta \ge \mathcal{J}(2\mathcal{J}-1)$.

Problem 5. Using the previous problem, show that any graph on *n* vertices and *e* edges contains at least $e(4e - n^2)/3n$ triangles.

Problem 6. Prove the inequality $\therefore \leq 3 \bigtriangleup + 3/8$ and argue that any extremal graph satisfies $\mathcal{J} = 1/4$ for almost all possible placements of the root.

Problem 7. Prove that $\Delta^2 \leq \checkmark^3$ and deduce the extremal examples.

Problem 8. Prove that for every integer $k \ge 2$ it holds $K_{k+1} \ge (k \not - (k-1))K_k$. Using it deduce Turán's theorem that any *n*-vertex graph without K_{k+1} contains at most $(1-\frac{1}{k})\frac{n^2}{2}$ edges.