Graph limits and flag algebras

Exercises - set 1

Problem 1. Prove that the sequence $\left(K_{n, 2 n}\right)_{n \in \mathbb{N}}$ is convergent.
Problem 2. Let G_{n} be a graph containing a clique on p vertices and $n-p$ isolated vertices, where p is the smallest prime divisor of n. Decide if the sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ is convergent.

Problem 3. Prove that the following is true for any sequence of graphs $\left(G_{n}\right)_{n \in \mathbb{N}}$ of growing orders: for every graph H the sequence of densities $d\left(H, G_{n}\right)$ is convergent if and only if for every graph H the sequence of homomorphism densities $t\left(H, G_{n}\right)$ is convergent

Problem 4. Determine $d(\boldsymbol{\Delta}, \boldsymbol{\square})$.
Problem 5. What sequences of graphs can converge to the following graphons?

Problem 6. Consider a real number $p \in[0,1]$ and a graphon W such that $W(x, y)=p$ if $x, y \in\left[1-2^{-n+1}, 1-2^{-n}\right]$ for some integer $n \geq 1$, and $W(x, y)=0$ otherwise. For any integer $k \geq 2$ determine the density of K_{k} in W.

Problem 7. Express $d\left(\therefore, W^{\prime}\right)$ in terms of $d(\therefore, W), d(\therefore, W), d(\AA, W)$ and $d(\boldsymbol{\Lambda}, W)$, where W^{\prime} is the depicted graphon containing two equal-sized parts, one with the graphon W and one with the complete graphon.

