Graph limits and flag algebras Exercises – set 1

Problem 1. Prove that the sequence $(K_{n,2n})_{n \in \mathbb{N}}$ is convergent.

Problem 2. Let G_n be a graph containing a clique on p vertices and n - p isolated vertices, where p is the smallest prime divisor of n. Decide if the sequence $(G_n)_{n \in \mathbb{N}}$ is convergent.

Problem 3. Prove that the following is true for any sequence of graphs $(G_n)_{n \in \mathbb{N}}$ of growing orders: for every graph H the sequence of densities $d(H, G_n)$ is convergent if and only if for every graph H the sequence of homomorphism densities $t(H, G_n)$ is convergent

Problem 4. Determine $d(\Delta, \square)$.

Problem 5. What sequences of graphs can converge to the following graphons?

Problem 6. Consider a real number $p \in [0, 1]$ and a graphon W such that W(x, y) = p if $x, y \in [1 - 2^{-n+1}, 1 - 2^{-n}]$ for some integer $n \ge 1$, and W(x, y) = 0 otherwise. For any integer $k \ge 2$ determine the density of K_k in W.

Problem 7. Express $d(\bigstar, W')$ in terms of $d(\bigstar, W)$, $d(\bigstar, W)$, $d(\bigstar, W)$, and $d(\bigstar, W)$, where W' is the depicted graphon containing two equal-sized parts, one with the graphon W and one with the complete graphon.

