
A mini-course on the hypergraph container method

Exercises

Problem 1. Show that, for every G ⊆ Kn and all H,

ex(G,H) ⩾
ex(n,H)(

n
2

) · e(G).

Problem 2. Prove Hoeffding’s theorem: For all real 0 < p ⩽ q ⩽ 1 and positive integer N ,

Pr
(
Bin(N, p) ⩾ qN

)
⩽ exp

(
−N · Ip(q)

)
, (1)

where Ip(q) := q log q
p + (1− q) log 1−q

1−p . Further, use (1) to conclude that:

(i) Pr
(
Bin(N, p) ⩽ (1− δ)Np

)
⩽ exp

(
− δ2Np

2

)
for every δ ∈ [0, 1] and

(ii) Pr
(
Bin(N, p) ⩾ (1 + δ)Np

)
⩽ exp

(
− δ2Np

2(1+δ/3)

)
for every δ > 0.

Hint: Suppose that X ∼ Bin(N, p). Since the function x 7→ eλx is strictly increasing for every

λ > 0, we have Pr(X ⩾ qN) = Pr(eλX ⩾ eλqN ). Use Markov’s inequality to bound the above

probability.

Problem 3. Assume that n is divisible by four and consider the following model of random

triangle-free graphs. Fix a partition JnK = A ∪ B and place an arbitrary matching M of n/4

edges in A. Make every vertex in B adjacent to exactly one randomly chosen endpoint of each

edge of M , so that the resulting graph has precisely n2/8 + n/4 edges. Show that almost all

such graphs (out of the total of 2n
2/8) are maximal triangle-free.

Problem 4. Prove that the sequence n 7→ ex(n,H)/
(
n
2

)
is nonincreasing for every graph H.

(In particular, πH := limn→∞ ex(n,H)/
(
n
2

)
exists for every graph H and πH ∈ [0, 1].)

Problem 5. Prove that, for every integer r ⩾ 2, there exists a K4-free graph G satisfying

G −→ (K3)r. To this end, consider the random graphGn,p for an appropriately chosen density p.

What is the probability thatGn,p ⊉ K4? (Hint: Use Harris’s inequality.) What is the probability

that G −→ (K3)r?

Problem 6. Prove that, for every integer r ⩾ 2, there exist constants δ > 0 and K such that

the following holds: If p ⩾ Kn−1/2 log n, then a.a.s. G −→ (K3)r for every G ⊆ Gn,p with

e(G) ⩾ (1− δ)
(
n
2

)
p. Use this fact to give another proof of the existence of a K4-free graph that

is Ramsey for K3.

Problem 7. Prove that, for every r ⩾ 2, there exists a constant K such that Gn,p −→ (K3)r
a.a.s. whenever p ⩾ Kn−1/2.

Problem 8. Derive the following stability theorem for almost-triangle-free graphs from Si-

monovits’s stability theorem and the triangle-removal-lemma: For every positive δ, there ex-

ists a positive ε such that every n-vertex graph with fewer than εn3 triangles and at least

ex(n,K3)− δn2/6 edges can be made bipartite by removing from it at most δn2 edges.



Problem 9. Prove that, for every δ > 0, there exists a consntant K such that, if m ⩾ Kn3/2,

then almost every K3-free graph with vertex set JnK and m edges can be made biparte by

removing from it at most δm edges.

Problem 10. Show that, for every graph H with at least two edges, there is a family of contain-

ers for the set of H-free graphs with vertex set JnK with fingerprints of size b = O(n2−1/m2(H)).

Problem 11. Show that, for every graph H with at least two edges, every δ > 0 and all r ⩾ 2,

there exists a constant K such that the following holds if p ⩾ Kn−1/m2(H) (respectively, if

m ⩾ Kn2−1/m2(H)):

(i) ex(Gn,p, H) = ex(n,H) · p± δn2p a.a.s.;

(ii) |Fm,m(H)| ⩽
(
ex(n,H)+δn2

m

)
;

(iii) Gn,p −→ (H)r a.a.s.;

(iv) If χ(H) > 2, then a.a.s. every largest H-free subgraph of Gn,p can be made (χ(H) − 1)-

partite by removing from it at most δn2p edges. (The case χ(H) = 2 follows easily from (i)

and is much less interesting.)

(v) If χ(H) > 2, then almost every F ∈ Fn,m(H) can be made (χ(H)−1)-partite by removing

from it at most δm edges. (Note that, in the case χ(H) = 2, this statement is clearly

false.)

Problem 12. Show that for (i), (ii), and (iv) above, the assumption that p ⩾ Kn−1/m2(H)

(respectively, m ⩾ Kn2−1/m2(H)) is optimal, up to the constant K.

Problem 13. Show that the hypergraph defined in the proof of the existence of graphs

graphs G satisfying G −→ind (H)r satisfies the assumption of the container theorem with

b = O(n2−1/m2(KvH
)).

Problem 14. For a set P ⊆ R2, let f(P ) denote the largest size of a subset of P containing no

collinear 3-tuples. Prove that, if P contains no collinear 4-tuples, then f(P ) ⩾ (
√
2−o(1))·|P |1/2,

as |P | → ∞.

Problem 15. Let π : R3 → R2 be the orthogonal proejection on a random hyperplane thorugh

the origin. Prove that, for every triple x, y, z ∈ R3 that are not collinear,

Pr
(
π(x), π(y), and π(z) are collinear

)
= 0.

Problem 16. Prove that every set A ⊆ JmK3 with at least 100m2 points contains at least

c|A|4/m6 collinear triples, for some absolute positive constant c.


