A mini-course on the hypergraph container method

Exercises

Problem 1. Show that, for every $G \subseteq K_{n}$ and all H,

$$
\operatorname{ex}(G, H) \geqslant \frac{\operatorname{ex}(n, H)}{\binom{n}{2}} \cdot e(G) .
$$

Problem 2. Prove Hoeffding's theorem: For all real $0<p \leqslant q \leqslant 1$ and positive integer N,

$$
\begin{equation*}
\operatorname{Pr}(\operatorname{Bin}(N, p) \geqslant q N) \leqslant \exp \left(-N \cdot I_{p}(q)\right), \tag{1}
\end{equation*}
$$

where $I_{p}(q):=q \log \frac{q}{p}+(1-q) \log \frac{1-q}{1-p}$. Further, use (1) to conclude that:
(i) $\operatorname{Pr}(\operatorname{Bin}(N, p) \leqslant(1-\delta) N p) \leqslant \exp \left(-\frac{\delta^{2} N p}{2}\right)$ for every $\delta \in[0,1]$ and
(ii) $\operatorname{Pr}(\operatorname{Bin}(N, p) \geqslant(1+\delta) N p) \leqslant \exp \left(-\frac{\delta^{2} N p}{2(1+\delta / 3)}\right)$ for every $\delta>0$.

Hint: Suppose that $X \sim \operatorname{Bin}(N, p)$. Since the function $x \mapsto e^{\lambda x}$ is strictly increasing for every $\lambda>0$, we have $\operatorname{Pr}(X \geqslant q N)=\operatorname{Pr}\left(e^{\lambda X} \geqslant e^{\lambda q N}\right)$. Use Markov's inequality to bound the above probability.

Problem 3. Assume that n is divisible by four and consider the following model of random triangle-free graphs. Fix a partition $\llbracket n \rrbracket=A \cup B$ and place an arbitrary matching M of $n / 4$ edges in A. Make every vertex in B adjacent to exactly one randomly chosen endpoint of each edge of M, so that the resulting graph has precisely $n^{2} / 8+n / 4$ edges. Show that almost all such graphs (out of the total of $2^{n^{2} / 8}$) are maximal triangle-free.

Problem 4. Prove that the sequence $n \mapsto \operatorname{ex}(n, H) /\binom{n}{2}$ is nonincreasing for every graph H. (In particular, $\pi_{H}:=\lim _{n \rightarrow \infty} \operatorname{ex}(n, H) /\binom{n}{2}$ exists for every graph H and $\pi_{H} \in[0,1]$.)

Problem 5. Prove that, for every integer $r \geqslant 2$, there exists a K_{4}-free graph G satisfying $G \longrightarrow\left(K_{3}\right)_{r}$. To this end, consider the random graph $G_{n, p}$ for an appropriately chosen density p. What is the probability that $G_{n, p} \nsupseteq K_{4}$? (Hint: Use Harris's inequality.) What is the probability that $G \longrightarrow\left(K_{3}\right)_{r}$?

Problem 6. Prove that, for every integer $r \geqslant 2$, there exist constants $\delta>0$ and K such that the following holds: If $p \geqslant K n^{-1 / 2} \log n$, then a.a.s. $G \longrightarrow\left(K_{3}\right)_{r}$ for every $G \subseteq G_{n, p}$ with $e(G) \geqslant(1-\delta)\binom{n}{2} p$. Use this fact to give another proof of the existence of a K_{4}-free graph that is Ramsey for K_{3}.

Problem 7. Prove that, for every $r \geqslant 2$, there exists a constant K such that $G_{n, p} \longrightarrow\left(K_{3}\right)_{r}$ a.a.s. whenever $p \geqslant K n^{-1 / 2}$.

Problem 8. Derive the following stability theorem for almost-triangle-free graphs from Si monovits's stability theorem and the triangle-removal-lemma: For every positive δ, there exists a positive ε such that every n-vertex graph with fewer than εn^{3} triangles and at least ex $\left(n, K_{3}\right)-\delta n^{2} / 6$ edges can be made bipartite by removing from it at most δn^{2} edges.

Problem 9. Prove that, for every $\delta>0$, there exists a consntant K such that, if $m \geqslant K n^{3 / 2}$, then almost every K_{3}-free graph with vertex set $\llbracket n \rrbracket$ and m edges can be made biparte by removing from it at most δm edges.

Problem 10. Show that, for every graph H with at least two edges, there is a family of containers for the set of H-free graphs with vertex set $\llbracket n \rrbracket$ with fingerprints of size $b=O\left(n^{2-1 / m_{2}(H)}\right)$.

Problem 11. Show that, for every graph H with at least two edges, every $\delta>0$ and all $r \geqslant 2$, there exists a constant K such that the following holds if $p \geqslant K n^{-1 / m_{2}(H)}$ (respectively, if $\left.m \geqslant K n^{2-1 / m_{2}(H)}\right)$:
(i) $\operatorname{ex}\left(G_{n, p}, H\right)=\operatorname{ex}(n, H) \cdot p \pm \delta n^{2} p$ a.a.s.;
(ii) $\left|\mathcal{F}_{m, m}(H)\right| \leqslant\left(\underset{m}{\operatorname{ex}(n, H)+\delta n^{2}}\right)$;
(iii) $G_{n, p} \longrightarrow(H)_{r}$ a.a.s.;
(iv) If $\chi(H)>2$, then a.a.s. every largest H-free subgraph of $G_{n, p}$ can be made $(\chi(H)-1)$ partite by removing from it at most $\delta n^{2} p$ edges. (The case $\chi(H)=2$ follows easily from (i) and is much less interesting.)
(v) If $\chi(H)>2$, then almost every $F \in \mathcal{F}_{n, m}(H)$ can be made ($\chi(H)-1$)-partite by removing from it at most δm edges. (Note that, in the case $\chi(H)=2$, this statement is clearly false.)

Problem 12. Show that for (i), (ii), and (iv) above, the assumption that $p \geqslant K n^{-1 / m_{2}(H)}$ (respectively, $m \geqslant K n^{2-1 / m_{2}(H)}$) is optimal, up to the constant K.

Problem 13. Show that the hypergraph defined in the proof of the existence of graphs graphs G satisfying $G \longrightarrow_{\text {ind }}(H)_{r}$ satisfies the assumption of the container theorem with $b=O\left(n^{2-1 / m_{2}\left(K_{v_{H}}\right)}\right)$.

Problem 14. For a set $P \subseteq \mathbb{R}^{2}$, let $f(P)$ denote the largest size of a subset of P containing no collinear 3-tuples. Prove that, if P contains no collinear 4-tuples, then $f(P) \geqslant(\sqrt{2}-o(1)) \cdot|P|^{1 / 2}$, as $|P| \rightarrow \infty$.

Problem 15. Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the orthogonal proejection on a random hyperplane thorugh the origin. Prove that, for every triple $x, y, z \in \mathbb{R}^{3}$ that are not collinear,

$$
\operatorname{Pr}(\pi(x), \pi(y), \text { and } \pi(z) \text { are collinear })=0
$$

Problem 16. Prove that every set $A \subseteq \llbracket m \rrbracket^{3}$ with at least $100 m^{2}$ points contains at least $c|A|^{4} / m^{6}$ collinear triples, for some absolute positive constant c.

