－

$\theta_{\theta} \theta^{\theta} \theta^{*}$

 －卦回－
－ θ
－

Lecture 30

Pf (Δ removal lem). Suppose not true.
ie. $\exists c>0$ st. $\forall a$, there is a counterexample: G
$\left\{\begin{array}{l}\text {. } G \text { has } \leq a n^{3} \Delta s \\ \text { - the removal of any } c n^{2} \text { edges does not make it }\end{array}\right.$ Δ-free.

- Apply reg lem. $\omega / . \varepsilon \ll c$ and $m=1 / \varepsilon$ to G to get an ε-reg. pitt. $V(G)=V_{1} \cup \cdots \cup V_{r}$, whee $m \leqslant r \leqslant M=M(\varepsilon, m)$

$$
\| v_{i}\left|-\left|v_{j}\right|\right| \leq 1 \text { for all } i, j \in[r] \text {. }
$$

- Let $R=R(\varepsilon, c / 4)$ be the reduced graph and $G_{R} \subseteq G$ the corresponding subgraph. Recall that $e(G)-e\left(G_{R}\right) \leq C n^{2} / 2$
- By assumption, G_{R} contains a Δ, which lies in three district clusters, say X, Y, Z that are pairwise E-reg. w. density $\geqslant c / 4$

- By counting lem $\Rightarrow G_{R}[x, Y, Z]$ Contains at least

$$
(n / r)^{3}\left(\frac{c}{4}-O(\varepsilon)\right) \geqslant\left(\frac{c}{8 r}\right)^{3} n^{3} \geqslant\left(\frac{c}{8 M}\right)^{3} n^{3} \quad \text { triangles. }
$$

Notice that $M=M(\varepsilon, m)$ depends in fact only on C.
Thus choosing $a=a(c)<\left(\frac{c}{8 M}\right)^{3} \Rightarrow G_{R} \subseteq G$ has $>a^{3} \Delta s S$
$\oint(6,3)$-the and Roth's the:

- Ruzsa-Szemeredi (6,3 t-thm \Rightarrow Roth') the on 3 AP (3-term arithmetic progression)
- 3-uniform hypergraph $H=(V, E), E \subseteq\binom{V}{3}$ is linear if any two of its edges share at most 1 vertex.
- For $s, t \in \mathbb{N}, \mathcal{H}$ contains an (s, t)-subgraph $\therefore \exists \mathrm{s}$ vertices in \mathcal{H} inducing $\geqslant t$ edges.

H is (s, t)-free if it does not contain

$(4,2)$-subgraph an (s, t) - subgraph.

The $(6,3)$-hm: If an n-vertex 3 -unit hyp \mathcal{H} is

$$
(6,3) \text {-free, } \quad \Rightarrow \text { then } \quad e(H)=o\left(n^{2}\right)
$$

Rok 1) This usp bd is not for from optimal:
$\exists n$-ux 3-unif H that is $(6,3)$-free and $e(\mathcal{H}) \geqslant n^{2} \cdot e^{-c \sqrt{\ln n}}$
(larger them
2) $(6,3)$-the is equivalent to

$$
\left.n^{2-\varepsilon} \quad \begin{array}{c}
\forall \operatorname{con} t x^{2} \\
\varepsilon>0
\end{array}\right)
$$

$$
\operatorname{ex}(n,\{\text { 药 }\})=o\left(n^{2}\right)
$$

Pf: Suppose not true: $\exists<>0$ st. for infinitely many n, there is a (6,3)-free 3-unff. n-ox \mathcal{H} w./ e(H) $>\mathrm{cn}^{2}$

By zooming into a subgraph w./ higher average degree (which is still a counterexample), we may in addition assume that \mathcal{H} is maximal in the sense

$$
\max _{F \leq H} d(F)=d(H)
$$

- The maximality of $H \Rightarrow H$ is linear (ice -free)
- if $\exists b \frac{M_{\sqrt{1 / 1}}^{d}}{a}$, then a, b, c, d form a component of H
b / c any other edge touching $\{a, b, c, d\}$ will yield a $(6,3)$-sung. Σ
Now, $F=H-\{a, b, c, d\}$ has higher ave deg, then \mathcal{H}
- H linear $\Rightarrow e(H) \leq\binom{ n}{2} / 3$ (partial steiner triple system
- Let G be the shadow graph of \mathcal{L}

$$
-V(G)=V(\mathbb{P})
$$

- turn every hyperedge in H into a triangle in G.

A triangle in G is an H-triangle if it corresponds to a hyperedge in H.

- H is linear \Rightarrow H-triangles in G are pairwise edge-disjoint \Rightarrow \# pairwise edge-disj Δs in $G \geqslant e(f)>c n^{2}$
removal lem
$\Rightarrow a$ contains $a n^{3} \Delta_{s}$ for some $a=a(c)$.
- For large $n, \quad a n^{3}>n^{2}>e(s)$
$\Rightarrow \exists$ a non -fe \triangle in G
$\Rightarrow(6,3)$-subgraph in H.

\oint Roth's thin:
The (Roth's the) $\forall \delta>0, \exists n_{0}$ st. $\forall n \geqslant n_{0}$, any subset $S \subseteq[n] w /$ size δn contains a $3 A P$.

$$
S \subseteq[n] \quad 3 A D \text {-free } \Rightarrow|S|=\sigma(n)
$$

Pf $((6,3)$-the \Rightarrow Roth's the $)$
Suppose \exists 3Ap-free set $A \subset[n]$ w./ $|A| \geqslant \delta n$
Def. a 3-partite 3-unf. hyp H as follows:

$$
-V(H)=\frac{[n] \cup[2 n] \cup[3 n]}{V_{1}} \underset{V_{2}}{\left[\begin{array}{l}
{[}
\end{array}\right]}
$$

$-\forall a \in \mathbb{A}, \forall x \in[n]$, add edge $(x, x+a, x+2 a)$
Observations: $e(\mathcal{H})=|A|: n \geqslant \delta n^{2}$

- Il is a linear hypergraph as every edge is completely determined by two pts $(x, x+a)$
- $(6,3)$ thim $\Rightarrow \quad H$ has a $(6,3)$-subgraph.

$$
\begin{aligned}
& (x, x+a, x+2 a) \\
& (y, y+b, y+2 b) \\
& (z, z+c, z+2 c)
\end{aligned}
$$

Claim H linear $\Rightarrow(6,3)$-subgr.
uses excictly two uxs from each V_{i}.

$$
\begin{gathered}
x=z \neq y \Rightarrow \begin{array}{l}
x+a \neq z+c \\
x+2 a \neq z+2 c \\
y+2 b=x+2 a \\
\Rightarrow \\
y+b \neq x+a \\
y+b=z+c
\end{array}, l
\end{gathered}
$$

$$
b+c=2 a, \text { but } a, b, c \in A
$$

1 A being 3AP-free

Dense (6,3)-free 3 -unf If
In the aboue of, A is 3 AP-fuee $\Leftrightarrow H$ is $(6,3)$-free.

$$
e(x)=|A| \cdot n
$$

- Behrend: \exists BAP-free $A \subseteq[n]$ of size $n \cdot e^{-c \sqrt{\log n}}$

$$
\Rightarrow \exists \mathcal{H} \quad(6,3) \text {-fue wol } e(\mathcal{H}) \geqslant n^{2} \cdot e^{-c \sqrt{\log n}} \text {. }
$$

OPEN: Well-krown conjective Simplest open case is $(7,4)$.
Coy (Brown - Erdós - Sós 73). Let $\in \mathbb{N}$
n-ux 3 -unif $H:(e+3 ; e)$-free $\Rightarrow e(H)=o\left(n^{2}\right)$
Conj (Long-Gowers) Let $\in \mathbb{N}$

$$
(e+4 ; e) \text { free } \Rightarrow \quad e(x)=O\left(n^{2-c}\right)
$$

- Sárközy-Selkow: $\left(e+2+\left\lfloor\log _{2} e\right\rfloor, e\right)$-free $\Rightarrow o\left(n^{2}\right)$
- Conlon - Gishboliner-Levanzov - Shapira

$$
\left(e+O\left(\frac{\log e}{\log \log e}\right), e\right)-\text { free } \Rightarrow o\left(n^{2}\right)
$$

- $(e+2, e)$-free: ref [Delcourte-Postle]
- [Glock - Joos - Kühn - Lichev - Pikhurko] $(6,4)$-problem
- [Shangguan]

