

Lecture 27 $S(n) \leq T(n) \cdot 2^{O(\frac{n^{3/4}}{\log^{3/2}n})}$ Goel (Dyatte) partition and utilise asyme. Turán # for Cy. Idea Pf: - Let SE[n] be a multi. Sidon set We may assume 5 has no perfect squaros, as there are E Sn perfect squares in (n), contributing a negligible 2^{Sn} factor - Partition S = AUB, where A= fae S: ∃n²¹³ < p prime s.t. plaz B= SIA = faeS: all prime duisors of a are < n^{2/3}} - Further partition A = A, UAz, where A,= {aeA: = h^{2/3}<p prime st. pla but ptb for any bESITa} $A_2 = A \setminus A_1 = \int a \in A : \exists n^{43}$ $and <math>\exists b \in S \setminus fa_2^3$ s.t. $p \mid (a,b)_q^2$ - By lem 1, we can write each GEB Len1 Vactin, we can write it as a= u.v. w./ veu as $a = u \cdot v \quad w \cdot / \quad v \leq u \leq n^{2/3}$. s.t. - either u is a prime $\geqslant n^{2/3}$ We fix one such representation u.v s.t. v is minimum. - or $v \in u \in n^{2/3}$ Exer. $(u,v) = (u_a, v_a) : uv = a , v = u \le h^{2/3}$

 $\forall u'u' = a \implies v \leq \min f'u', u' g'$ - Further partition B= B, UB2 UB3 • $B_1 = \int a \in B$: $v \leq n^{1/3} \int \frac{n^{1/2}}{(\log n)^8}$ • $B_2 = \int a \in B$: $n^{1/3} \leq v \leq \frac{n^{1/2}}{(\log n)^8}$ • $B_3 = \int a \in B$: $\frac{n^{1/2}}{(\log n)^8} \leq v \leq n^{1/2} \partial g$ $S = A_1 \cup A_2 \cup B_1 \cup B_2 \cup B_3$ $\leq 2^{\frac{12}{(\log n)^3}}$ # such small sets $\leq \sum_{i=1}^{n} \binom{n}{i}$ $i \leq \frac{8n^{3/4}}{(\log n)^4}$ • A: elements in A, has a prime dilisar p>h²³ and p does not divide any others. $\Rightarrow \forall prime p > n^{2/3}$, A, contains ≤ 1 multiple of p \Rightarrow # choices for $A_1 \leq \prod \left(\lfloor \frac{n}{p} \rfloor + 1 \right)$ z T(n)Prime

 $n^{2/3} < \rho \leq n$ that divides > 2 • Az: Consider primes elements of S. For each such prime p, let mp ? 2 be the # multiples of p in S. × δ_X≥2 Aux. bip. $\int on sets X and Y$ - X contains all primes $p \in (n^3, n]$ $m/mp \ge 2$ - X contains all primes pE(n³³, n] ~ mp≥2 Y=(n¹/3] ~ Y = [n¹/3] · x~y iff x.y ES · Note that $d(x) = m_x > 2$ VXEX Cy - free S multi. Sidon \Longrightarrow T $|A_2| = e(\Gamma)$ Thm Z => $e(T) \leq \pi(n) \approx \frac{n}{\log n}$ Thm Z. $\forall m \leq n$, $e_{(m,n, C_4)} \leq mn^2 + n$ Using min deg from X side is 7,2, we can do better A hat in T is a P3 w./ mid-pt in X [is Cy-free => no two hots sharing the same pair of endpts in y $\sum_{p \in \chi} \binom{m_p}{2} \leq \binom{|Y|}{2} = \binom{n^{1/3}}{2}$ 6.2.

 $\Rightarrow |A_2| = e(P) = \sum_{p \in X} m_p \leq 2 \sum_{p \in X} {m_p \choose 2} \leq n^{\frac{2}{3}}$ $\forall p: mp \leq 2 \binom{mp}{2}$ a = uv solisfiles $v \le n^{\frac{1}{3}}$ $u \le n^{\frac{2}{3}}$ • B_1 : By defn. $\forall a \in B_1$, $U = [n^{2/3}], V = [n^{1/3}]$ Aux, bip. J on UUV, $u \in U, v \in V$ $u \sim v \iff u \cup = a$ is the chosen representation of a. Similarly [is Cy-free us B, is multi. Sidon By Thm2 \Rightarrow $|B_1| = e(T) \leq |V| |U|^2 + |U| = 2n^{2/3}$ · Bz: Let R = 8 log log n, dyatic partition Bz into B', B2. st. $\forall r > 1$, $B_2 = \int a \in B_2$: $\frac{n^2}{2^{R+r}} < v \le \frac{n^2}{2^{R+r-1}} =: M_r \int_2^{\infty}$ As u>n¹³, there are < lag n subsets Br $\forall a = uv \in B_2^{\ell}$ $u \leq 2^{R+r} n^{1/2} := N_r \leq n^{2/3}$ U ≈ [N_r] Build Aux. bip. I for Br. on sets $\bigvee = \left[M_r \right]$ unu iff un: a is the chosen representation.

· [Gy-free =) $|B_{2}^{r}| = e(\Gamma^{r}) \leq N_{r} + \int N_{r} \cdot M_{r}$ $= |B_{2}| = \sum |B_{2}^{r}| \leq \frac{8n^{3/4}}{(\log n)^{4}} = \frac{1}{2^{1/2}}$ • B_3 : Let $R = 8 \log_2 \log n$, partition $B_3 = B_3' \cup B_3^2 \cup$ where $\forall r \in [R]$ $\beta_3^r = \int \alpha \in \beta_3 : \frac{n^{1/2}}{2^r} < v \leq \frac{n^{1/2}}{2^{r-1}}$ - Fix $r \in [R]$ and $a \in B_3^r$ w./ repr. $a = u \cdot v$. Claim v has no prime divisor < n^{1/7}. Suppose p<n1/2 is a prime divisor of $\Rightarrow up < 2 n^{1/2} n^{1/7} < n^{2/3}$ =) (up, v/p) is a repr. & minimality of v. By the claim, Lem 2 ZC20 s.t. Upring $\begin{array}{c}
\text{Lem2} \quad n^{1/2} \\
\text{ thorefor } \nu \leq \frac{n^{1/2}}{2^{r-1}} \cdot c \cdot TT \quad \left(1 - \frac{1}{p}\right) \\
\end{array}$ Pis ... Elken, # integers men which are not divisible by any of hi is penn $\leq cn \left(\frac{1}{1 - \frac{1}{p_i}} \right)$ $i \in [k_i]$ Len $3 \leq O\left(\frac{n^{1/2}}{2^{r} \log n}\right) =: M_{r}$

Lem 3 (Merten's estimate) Claim a has not prime delisor between 2^{2r} and h¹7 $\begin{aligned}
 \overline{\prod} & \left(1 - \frac{1}{p}\right) = \Theta\left(\frac{1}{\log n}\right) \\
 p < n
 \end{aligned}$ <u>Pf</u>: Suppose = such p/u $=) \quad \frac{u}{p} \in \frac{2^{r} \cdot n^{2}}{2^{2r}} \leq \frac{n^{2}}{2^{r}} < v$ and $v \cdot p \leq n^{\frac{1}{2}} n^{\frac{1}{7}} \leq n^{\frac{2}{3}}$ so $(v \cdot p, \frac{1}{p}) \leq \frac{1}{p}$ if $v \in \mathcal{V}$ $\Rightarrow \text{ If Chores for } u \leq 2^{\frac{1}{p}} n^{\frac{1}{2}} \in \overline{\Pi} (1-\frac{1}{p})$ $\stackrel{>}{=} \text{tt choraes for } u \leq 2 \cdot n \cdot c \cdot \prod_{\substack{prime\\ 2^{2r} \leq p \leq n^{1/2}}} (1 - \frac{1}{p})$ $= O(2 \cdot n^{\frac{1}{2}} \cdot \frac{r}{\log n}) = N_r$ Associate Br w./ aux. bip. I an (/ * (Nr) $V = (M_r)$ une (=> (u,u) is the chosen repr. for some a EBS Lem (H) =) # choicer for B3 Lent Gren nº log n ≤ n ≤ n # Cy-free 6ip ~/ partite sotr of = # (Mr, Nr)-ue bije G-free Pr size m and a is $\leq 2^{O(M_r N_r^{1/2})}$ $\leq 2^{O(mn^{1/2})}$

 $= O\left(\frac{r^{1/2}}{2^{N_2}}, \frac{n^{3/4}}{(\log n)^{3/2}}\right)$ where $O(M_r \cdot N_r) =$ choices for B_3 $\leq 2^{O(\sum_{r \in [R]} M_r \cdot N_r^{N_2})} = 2^{O(\frac{n^{3/4}}{\log^{3h} n})}$ =) # choices for Bz