

Lecture 25

- Upper bound . Ram: balancedness is not needed.

Lem. Let (T, R) be a rooted tree w./ at least one root,

$$
\Rightarrow \quad \operatorname{ex}\left(n, \tau^{p}\right)=O_{p}\left(n^{2-1} Y_{P_{T}}\right) \quad \quad O_{T}=\frac{e(T)}{|T|-|R|}
$$

Pf: Let $t=|T|$ and G be an $n-v x$ graph w./ $c n^{2-a}$ edges where $a=1 / \rho_{T}$ and $c>2(t+p)$.

$$
\text { - } G \underset{(H)=h \leqslant n}{\longrightarrow} H \leqslant G \text { w. } \delta(H) \geqslant d(G) / 2=c n^{1-a}
$$

- greedy embedding \Rightarrow \#labeled copies of (unrooted) T

$$
\geqslant h \cdot \delta(H) \cdot(\delta(H)-1) \cdots(\delta(H)-t+2) \geqslant\left(\frac{c}{2}\right)^{t-1} h \cdot n^{(t-1)(1-a)}
$$

- \# roots $R \leqslant h^{|R|}$

Averaging $\Rightarrow \Rightarrow$ choice R^{\prime} of roots in at least

$$
\begin{equation*}
\frac{(c / 2)^{t-1} h \cdot n^{(t-1)(1-a)}}{h^{(R)}} \geqslant \frac{(c / 2)^{t-1} n^{(t-1)(1-a)}}{n^{|R|-1}}=\left(\frac{c}{2}\right)^{t-1} \geqslant \rho \tag{act}
\end{equation*}
$$

as $\quad a=1 / e_{T}=\frac{t-|R|}{t-1}$.

Lower bound requires the balancedness.
Exer: Give an example of an unbalanced rooted tree (τ, R), for which $\operatorname{ex}\left(n, \tau^{\rho}\right)=\Omega_{\rho}\left(n^{2-1 / e_{T}}\right)$ is not true.

Lem \forall balanced rooted tree $(T, R), \exists p \in \mathbb{N}$ sit.

$$
e_{x}\left(n, \tau^{p}\right)=\Omega_{\rho}\left(n^{2-1 / P_{T}}\right)
$$

To show that any rational $r \in(1,2)$ can be on exponent for a finite fam. of forbidden graphs, it suffices to find balanced rooted tree $(T, R) \quad \omega_{0} / 2-1 / \rho_{T}=r$.

Write $r=2-a / b$ for some $a, b \in \mathbb{N}$.
Exam. Take $a, b \in \mathbb{N} \omega / a-1 \leqslant b<2 a-1$, let $i=b-a$.

- Ta,b rooted tree: Take an unrooted path on [a]
- cad an additional rooted leaf to ofeach . the it 1 uss

$$
\text { l, }\lfloor 1+a / i\rfloor,[1+2 \cdot a / i\rfloor, \cdots, L^{[+(i-1) a / i], a .}
$$

- For $b \geqslant 2 a-1$, define Ta,b recursively by attaching a rooted leaf to each unrooted us of $T_{a}, b-a$.

By constr, $T_{a, b}$ has a unrooted uss and b edges

$$
\Rightarrow \quad \rho_{T_{a, b}}=b / a
$$

Ex

$$
T_{4,7}
$$

$T 4,9$

Lem \forall balanced rooted tree $(T, R), \exists p \in \mathbb{N}$ sit.

$$
e_{x}\left(n, \tau^{p}\right)=\Omega_{p}\left(n^{2-1} P_{T}\right)
$$

Pf (Sketch) Let (T, R) be a rooted tree w. $/\left\{\begin{array}{l}-a \text { unrooted uss } \\ -r=|R| \text { rooted uss }\end{array}\right.$

- $s=2 b r, d=s b, n=q^{b}$ for some $-b$ edges.
large prime power q.
- Take $2 b$-variate indep. curl random polys.
$f_{1}, \cdots, f_{a}: \mathbb{F}_{q}^{b} \times \mathbb{F}_{q}^{b} \rightarrow \mathbb{F}_{q}$, each of deg. at most d.
- (n, n)-us bip. G w./ each partite set $\cong \mathbb{F}_{2} b$ where $U \cup \in E(G)$ if all $f_{i}, i \in[a]$, vanishes

$$
f_{1}(u, v)=\cdots=f_{a}(u, v)=0 \quad n^{-a / b}
$$

- In expectation, edge density $=q^{-a} \Rightarrow \mathbb{E}(e(G))=n^{2-a / b}$

We are left to show that the expected \# copies of graphs in τ^{p} is negligible.

- Fix us $\omega_{1}, \cdots, \omega_{r}$ in G and Let U be the collection of copies of T in G rooted at $\left\{\omega_{1}, \cdots, \omega_{r}\right\}$ We need to bound the moments of $|u|$

Claim $\mathbb{E}\left(|\mathcal{U}|^{s}\right)=O_{s}(1)$ (balaneducess used $\begin{aligned} & \text { here }\end{aligned}{ }^{\text {need }}$ to bound its moments.

- Using Lang-Weil bound \Rightarrow
either $|U| \leqslant C$ (depending only on T) or $|u| \geqslant q / 2$
- Marka ineq $\Rightarrow \operatorname{Pr}(|U|>c)=\operatorname{Pr}(|U| \geqslant q / 2)=\operatorname{Pr}\left(|U|^{s}\left(\mid z_{2}^{s}\right)\right)$

$$
\leqslant \frac{O_{s}(1)}{(q / 2)^{s}}
$$

- Consequently, the expected a bad $\left\{\omega_{1}, \ldots, \omega_{0}\right\}$ (i.e. sitting in move than C copies of T as routs)

$$
\begin{align*}
& \text { is } \leqslant 2 n^{r} \cdot \frac{O_{5}(1)}{(G / 2)^{s}}=0(1) . \\
& \Rightarrow \mathbb{E}(e(G)-B \cdot n) \geqslant \mathbb{E}(e(G)) / 2 \\
& \ldots p=C+1
\end{align*}
$$

Pf of Claim: Notice that $|U|^{s}$ counts \# ordered collection of s copies of T in $G \omega . /$ roots $\left\{\omega_{1}, \ldots, \omega_{r}\right\}$.

- Each one of such s-tiple corresponds to a graph H in τ^{s} locally indep.
For $H \in \Psi^{i}$, the probability that H appears in G
is $q^{-a \cdot e(H)}$
write $N_{S}(H)=$ \# ordered collections of s copies of T w./ routs $\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ whose union is a copy of H

$$
\begin{align*}
& \Rightarrow \mathbb{F}^{F}\left(|U|^{s}\right)=\sum_{H \in \lambda^{s}} N_{s}(H) \cdot q^{-a \cdot e(H)} \\
& N_{s}(H)=O_{s}\left(n^{|H|-|R|}\right) \Rightarrow \\
& =\sum_{H \in 耳^{s}} O_{s}\left(n^{|H|-(R \mid}\right) \cdot q^{-a \cdot e(H)} \\
& =\bigcup_{s}\left(\sum_{H \in 7^{s}} q^{b(|H|-|R|)-a \cdot e(H)}\right) \stackrel{\operatorname{Lem}^{\pi}}{=} O_{s}(\mid) \tag{s}\\
& \text { sem. } \cdot(T, R) \text { balanced } \\
& \text { rooted tree } \\
& \text { - } H \in \chi^{s} \\
& \Rightarrow \rho_{T} \leqslant \frac{e(H)}{|H|-|R|} \\
& \text { Induct on } s \\
& \text { Lem }
\end{align*}
$$

Conj (subdivision conj. Kong-Kim-L.)
Let F be a bip. graph. If ex (n,F)=O(n+1) for some $\alpha>0$, then

$$
\operatorname{ex}(n, \sup (F))=O\left(n^{1+\frac{\alpha}{2}}\right)
$$

Rank: If an $n-x$. G has $d(G) \geq c n^{d / 2}$
\Rightarrow its square has ave deg $\gtrsim(d(G))^{2}$

\Rightarrow the square contains F.
While being interesting on its own, in fact we shall See that the Subdivision Conj \Rightarrow Retinal exponent conj.

Known: 1. even cycles, θ-graphs [Bondy-Sim]
2. Complete kip. graph

$$
\begin{gathered}
{[\text { Conlon-Lea-Jem2er }] \quad \operatorname{ex}\left(n, \operatorname{sub}\left(K_{s, t}\right)\right)=\theta\left(n^{\frac{3}{2}-\frac{1}{2 s}}\right)} \\
t \gg s .
\end{gathered}
$$

Problem: Find more families for which the subd, conj holds.

- We can extend the concept of powers of 1 rooted trees to $b_{i p}$ as fellows.
$-(F, R), R$ roots, F sip.
$-\frac{\forall e S \subseteq V(F)}{\text { nonempty }}$, let $P_{F}(S):=\frac{e_{S}}{|S|}, \quad e_{S}=$ e edges i F incident to
- Let $P(F)=P_{F}(V(F) \backslash R)$.

Say (F, R) is balanced if $P_{F}(S) \geqslant P(F) \forall$ nonempty

$$
S \subseteq V(F) \backslash R .
$$

And define its powers analogously.

Lem (Bukh-Callon) \forall balanced bip, rooted greph F w./ $P(F)>0, \exists l_{0}=l_{0}(F)$ s.t. $\forall l \geqslant l_{0}$

$$
\operatorname{ex}\left(n, F^{\ell}\right)=\Omega_{l}\left(n^{2-1 / P(F)}\right)
$$

