

Lecture 23
Ever: $\forall \ell \geqslant 2$ and nonempty ${ }^{n-u x}$ graph $G$,

$$
\frac{\operatorname{hom}\left(C_{2 l}, G\right)}{\operatorname{hom}\left(C_{2 l-2}, G\right)} \geqslant \frac{\operatorname{hom}\left(C_{2 l-2}, G\right)}{\operatorname{hom}\left(C_{2 l-4}, G\right)}
$$

In particular, $\quad \operatorname{hom}\left(C_{2_{k-2}}, G\right) \leq n^{\frac{1}{k}} \operatorname{hom}\left(C_{2_{k}}, G\right)^{1-\frac{1}{k}}$.

- $c_{0}=K_{1}, C_{2}=K_{2}$.

Hint: consider trace of powers of adj onatrix and $C-S$.
Using this exercise, together w/ 1 romegularisation thick and asymm. Sidorenks's conj for even cycles, from the previous Lm , we get the following version.
Lem Let $k \geqslant 2$ and $G$ be an $n$-lx nou-empty graph for large $n$. Let $\sim$ be a symm. binary relation defined over $V$ s.t.
$\forall u, v \in V, v$ has at most $\alpha \cdot d(v)$ many neighbors $w$ sit. $u \sim \omega$. If $\alpha<\frac{1}{n^{k_{k}} \log ^{5} n}$,
$\Rightarrow$ then $\exists$ a $C_{2 k}$-nom $\left(x_{1}, \ldots, x_{2_{k}}\right)$ in $G$ s.t. $\forall i \neq j, x_{i} x x_{j}$.


Conj (Erdös-Sim) $H$ hip. $\delta(H)=s$, then $\exists \varepsilon>0$ st.

$$
e x(n, H)=\Omega\left(n^{2-\frac{1}{s-1}+\varepsilon}\right)
$$

Disproved by Janzer using blowup of ever cycles.
[J]. $\forall$ even $s \geqslant 4, \forall \delta>0, \exists s$-reg $H\left(=C_{2 k}[s / 2]\right)$
$\omega \% \quad \operatorname{ex}(n, H)=O\left(n^{2-\frac{2}{s}+\delta}\right) \cdots(*)$
He also conjectured that the same bound (A) should be true for some s-reg bis. $H$ for every odd $s \geqslant 3$.

He proved the $s=3$ case: $\exists 3$-reg bip. $H \quad \infty \quad /$

$$
e x(n, H)=O\left(n^{4 / 3+o(1)}\right)
$$

Rule $0(1)$ is needed by considering random construction.

Conj (Grzesik, Janzer-Nagy) $\forall 0 \leqslant \alpha \leqslant 1$ and $H$, if $\operatorname{ex}(n, H)=O\left(n^{2-\alpha}\right) \Rightarrow$ then $\operatorname{ex}(n, H[n])=O\left(n^{2-\frac{\alpha}{r}}\right)$
known: - True for all trees.

- OPEN for 2-hbwup of even cycles

$$
e_{x}\left(n, c_{2 k}[2]\right)=O\left(n^{3 / 2+1 / 2 k}\right) ?
$$

- the $C_{6}[2]$ Jonzer-Mettuku-Nogy.

3-reg bic.
The 1 counterexample of Janzer for ex $(n, H)=\Omega\left(n^{3 / 2+\varepsilon}\right)$ has girth 6. Here we give another counterexample w./ girth 4.

$$
\cdot C_{2 k} \square K_{2}
$$

Thu $\forall k \geqslant 10$,

$$
e x\left(n, C_{2 k} \triangleright K_{2}\right)=\theta\left(n^{3 / 2}\right)
$$



Idea - Let $\Gamma=$ al $(V, E), \quad V=E(G)$
$\Gamma: C_{2 k}: e_{1}, \ldots, e_{k}, \quad e_{i} \cap e_{j}=\phi \quad E:\left|\tilde{-}_{\Gamma}\right| e^{\prime}$ two uss farm an edge in $T$ if $\Rightarrow C_{k} 口 K_{2}$ in $G$ overlap $e, e^{\prime}$ form a $C_{4}$ in $G$.
Conflict: $e_{i} \rightarrow e_{j} \neq \phi$ Ex. e $e^{\prime} \Rightarrow e$
a If there is not much conflict. $\Rightarrow$ embedding even cycle without conflict lem.

- lots of conflict $\Rightarrow$ find an sym dense subgraph in $G$ and embed $C_{k} O K_{2}$ there using $D P C$.
Lem Let $H$ be a bit. graph w./ max. deg 3 on one side. Let $G$ be a bip. graph $\omega . /$ parts $A$ and $B$ and $e(G)=p|A||B|$. Let $c_{1}, c_{2} \geqslant 2|H|$. Suppose $P \geqslant c_{1}|B|^{-1 / 3}$ and $P \geqslant c_{2}|A|^{-1}$

$$
\Rightarrow \quad H \in G
$$



- Now we prove $e_{x}\left(n, C_{2 k} \circ k_{2}\right)=O\left(n^{3 / 2}\right)$.

May assume $G \cdot n-w$

- K-culmost reg

$$
K\left(\cdot n^{1 / 2} \geqslant \Delta(G) \geqslant \delta(G) \geqslant C_{n^{1 / 2}}=d \quad(C \text { snuff large })\right.
$$

- We call a $C_{4} x y z \omega$ thin if both $x z$ and $y_{\omega}$ have codeg $\leqslant T d^{2 / 3}$, and thick otherwise.
- By supersaturation, $G$ has $\geqslant c \cdot d^{4}$

thick if $>T d^{2 / 3}$ copies of 4 -cycles ( $c$ depends only on $k$ )

Case 1 $\geqslant \frac{c}{2} d^{4} \quad C_{4}$ 's are thick.
By averaging $\exists$ an edge $x y$ sitting in $\geqslant \frac{c d^{4} / 2}{e(G)} \geqslant \frac{c d^{4} / 2}{K \cdot C \cdot n^{3 / 2} / 2}$
$w l o g, \geqslant$ half of these 4 -cycles as e thick $b / c$ the pair $(y, w)$.

- Let $B=N(y)$ 4-cyde

$$
A=\left\{\omega: \exists \text { thick } \wedge x z \omega \text { and } d(\omega, B)>T d^{2 / 3}\right\}
$$

By defn, for every, thick $C_{4}$ w./ $\omega \in A$, the $\omega z$ edge. (ie) between $A$ and $B$


$$
B=N(y)
$$

$$
\Rightarrow \quad e_{G}(A, B) \geq \# \text { thick } c_{4} \text { on } x y \geqslant \frac{c d^{4}}{2 K C \cdot n^{3 / 2}}
$$



As $|B|=d(y) \leqslant \Delta(G) \leqslant K \cdot C \cdot n^{1 / 2}$
One can check that DRC lem applies $\Rightarrow C_{2 k} \Delta K_{2}$ $\subseteq G[A, B]$.

Case 2 $\geqslant c d^{4} / 2 \quad C_{4}$ are thin.

- $V(P)=E(G)$
thin
- two adj if they form $a_{\wedge} C_{4}$ in $G$.

It suffices to embed a $C_{2 k}=\left(e_{1}, \ldots, e_{m}\right)$ in $T$ s.t. $\forall i \neq j$ $e_{i} \cap e_{j}=\phi$. or $e_{i} \nsim e_{j}$.
Def ~ on $V(\Gamma)$ st. $e \sim e^{\prime}$ of $e n e^{\prime} \neq \phi$ in $e^{~} D e^{\prime}$

$$
\begin{aligned}
& \text { e }|V(\Gamma)|=e(G) \\
& \text { e } e(\Gamma) \geqslant \# \text { thin } C_{4} \text { in } G \\
& \geqslant c d^{4} / 2
\end{aligned}
$$

(O)
 Let $\sim$ be a gym. binary relation defined over $V$ st. $\forall u, v \in V$, $v$ has at most $\alpha \cdot d(u)$ many neighbors io st. un. $4 \alpha<\frac{1}{n^{k} \operatorname{cog}_{n}}$,

$$
\Rightarrow d(T) \geqslant \frac{2 e(P)}{|V(P)|}
$$


st $\forall i \neq j, x_{i} \not x_{j}$.
$n$ here is $\left|T^{\prime}\right| \leqslant|P|$

$$
\begin{equation*}
\geqslant \frac{c d^{4}}{e(G)} \geqslant \frac{2 c d^{4}}{K \cdot C \cdot n^{3 / 2}} \tag{G}
\end{equation*}
$$

- $\Gamma \rightarrow \Gamma^{\prime} \omega \cdot / \delta\left(\Gamma^{\prime}\right) \geqslant \frac{1}{2} d(\Gamma) \geqslant \frac{c d^{4}}{K \cdot C \cdot n^{3 / 2}}$.

Apply (D) on $\Gamma^{1} \forall u, v \in V\left(P^{\prime}\right)$
$\#\left\{\omega: \omega \sim u, \omega \in N_{\Gamma},(v)\right\}$

$$
\leqslant d_{G}(a, b)
$$

As we use only thin $C_{4} s$

$$
\Rightarrow \quad d_{G}(a, b)<T d^{2 / 3}
$$

Thus, we need to check $\alpha=\frac{T d^{2 / 3}}{d_{p \prime}(v)}<\frac{\Gamma 1}{e(G)^{1 / k} \log ^{5} e(G)}$

