

Lecture 22

Rose":

$$
H_{3,7}
$$

Def: (Cylindrical grid) Let $k, \ell \geqslant 2$ and define the (k, l)-cylindrical grid $C_{k, l}$ as follows.

$$
\begin{aligned}
& V=\left\{x_{i, j}: \quad i \in[k], j \in[l]\right\} \\
& E=\left\{x_{i, j} x_{i, j+1}, x_{i, j} x_{i+1, j+1}, \quad i \in[k], j \in[l-1]\right.
\end{aligned}
$$

where $x_{k+1, j}=x_{1, j}$ for all $\left.j \in[l]\right\}$
Obs: $C_{t, 2 t-1}$ contains $G_{t, t}$ as a subgraph.

The $\operatorname{ex}\left(n, C_{k, l}\right)=O\left(n^{3 / 2}\right)$
Def: Let $R, k \geqslant 2$. A collection ζ of $C_{2 k}$ is R-rich if $\forall c \in 6, \forall v \in C$, there are $\geqslant R \quad 2 k$-cycles in 6 containing/extending $C-v$.

Lem Given $k, R \geqslant 2$, there exists $C=C(k, R)$ such that $\forall n$-vex graph G./ $C n^{3 / 2}$ edges contain an R-rich collection of $C_{2 k}$.

Pf (Lem \Rightarrow Thu) Take $R=k \cdot l$ and apply Lem \Rightarrow R-rich collection C_{6}.
we greedily grow a cylindrical gad.

- Step 1 Take arbitron $C^{\prime} \in \mathscr{C}$, by $Q-r i c h ~ \exists C^{2}$ exteding
 $c^{\prime}-u^{\prime}$.
Step 2: extend $c^{2}-u^{2}$

If (Len) By supersaturation, G continuous \geqslant $\alpha(d(G))^{2 k} \geq \alpha\left(C n^{1 / 2}\right)^{2 k}$, where $\alpha \geqslant \Omega_{1}\left(k^{-k}\right)$

- Let G_{0} be the call of all $C_{n k}$'s in G.

We keep removing $P_{2 k-1}$ that lies in few $C_{2 k}$

$$
G_{0} \supseteq G_{1} \supseteq C_{2} \supseteq . \sigma_{t}(\text { final })=\zeta
$$

Suppose C_{i} is defined. If $\exists C \in \zeta_{i}$ and a vertex $v \in C$ sit. \# cycles extending $C-v$ is less then R, then remove all cycles in C_{i} containing $C-v$.

- Note that each $(2 k-1)-v$ path $\left(C_{-v}\right)$ is district

$$
\begin{aligned}
\Rightarrow \text { \#cycles removed } & \leqslant \# P_{2 k-1} \cdot R \\
& \leqslant R \cdot n \cdot \Delta(G)^{2 k-2}
\end{aligned}
$$

- We need $2 R \cdot n \cdot \Delta(G)^{2 k-2}<\alpha\left(C_{n}^{1 / 2}\right)^{2 k}$
K - dost veg

$$
\begin{aligned}
& 2 R \cdot n\left(K C n^{1 / 2}\right)^{2 k-2}<\alpha\left(C n^{1 / 2}\right)^{2 k} \\
& C \geqslant 2^{k \log k}
\end{aligned}
$$

\sum Even cycle embedding without conflict via dyatiz partitibuing.

Dancer 11"Rainbow Turán \# of even cycler,...."
2)" Dispf of a conj Erdo's-Simomuits"

Lem $1(\operatorname{Lem} 2.5$ in 1)) Let $k \geqslant 2$ and G be a graph w./ a symm. binary relation \sim defined over V^{2}.
Suppose $\forall(u, v) \in V^{2}$ and $\forall \omega \in V, w$ has at most s neighbors z st. $(u, v) \sim(w, z)$
\Rightarrow Then \# $C_{2 k}$-homomorphisms $\left(x_{1}, \cdots, e_{i_{k}}\right)$ st. $\left(x_{i}, x_{i+1}\right) \sim\left(x_{j} x_{j+1}\right)$ fo some $i \neq j$ is

$$
\leqslant 32 k \sqrt{k s \cdot \Delta(G) \cdot \operatorname{hom}\left(C_{k-2}, G\right) \text { ham }\left(C_{k}, G\right)}
$$

Advantage of dyatic partition/ pigeonholing members
1): For each part, we can treat all 1 there as if they are the same
2): \#parts is logarithmic, very small.

Pf: For $r \in \mathbb{N}$. let

- $P_{k}^{r}=\# P_{k}$-homornophisms whose eadpts x, y satisfy home $\left.\quad \begin{array}{c}\text { (length- }(k-1) \text { walk) }\end{array} P_{k}, G\right) \in\left[2^{n-1}, 2^{r}\right)$
- $P_{k+1}^{r}=$ \# P_{k+1}-nom. whose enters x, y satisfy home $\operatorname{llenth}\left(P_{k+1}, G\right) \in\left[2^{r-1}, 2^{r}\right)$
(length-k. walk)
By defy.

- For $r, t \in \mathbb{N}$, let

$$
\begin{array}{r}
\gamma_{r, t}=\# C_{2_{k}-\text { nom }}\left(x_{1}, x_{2}, \cdots, x_{2 k}\right) \\
\text { st. } \text { pom }_{x_{1}, x_{k+2}}\left(P_{k}, G\right) \in\left[2^{r-1}, 2^{r}\right) \\
\quad \operatorname{hom}_{x_{2}, x_{k+2}}\left(P_{k+1} G\right) \in\left[2^{t-1}, 2^{t}\right)
\end{array}
$$

Conflict occurs at

$$
\begin{aligned}
& \text { ヨ2 } \leqslant i \leqslant k t), x_{1} x_{2} \sim x_{i} x_{i+1} \quad x_{1} x_{2} \sim x_{i} x_{i+1} \\
& \text { Total \#BAD } C_{2_{k}} \text { hon } \leqslant \sum_{r, t \geqslant 1} \gamma_{r, t}
\end{aligned}
$$

Let us bound $\gamma_{1, t}$ from abas in two diff. ways.
(1) $\gamma_{r, t} \leqslant P_{k}^{r} \cdot \Delta(G) \cdot 2^{t}$

- first choose P_{k}-hon of
typer $\longrightarrow\binom{$ so $x_{1}, x_{k \neq 2}$ fixed }{$\leqslant p_{k}}$ $\leqslant P_{k}^{r}$ choices

- Choose $x_{2} \longrightarrow \leqslant \Delta(G)$
- Choose P_{k+1}-ham with given ends x_{2}, x_{k+2}
(blue then purple)

$$
\longrightarrow \leqslant 2^{t}
$$

(2) $\gamma_{r, t} \leqslant P_{k+1}^{t} \cdot k \cdot s \cdot 2^{r}$.
(purple then blue) - first $P_{k t 1}$-ham of type t

$$
\longrightarrow x_{2}, x_{k+2} \text { fixed } \leqslant P_{k+1}^{t}
$$

- Choose $x_{1}, \leqslant k \cdot s$
- Choose Pkrhom a/ given ends x_{1}, x_{k+2}
WANT Bound

$$
\begin{aligned}
\sum_{r, t \geqslant 1} \gamma_{r, t} & \leq \sum_{r, t} P_{k}^{r} \Delta(G) \cdot 2^{t} C_{2 k-2} \text { up to } \\
& =\Delta(G)\left(\sum_{r, t} P_{k}^{r} \cdot 2^{r} 2^{t-r} \text { factor } 2\right.
\end{aligned}
$$

Suppose $t-r \leqslant q$ to be determined.

$$
\begin{aligned}
\sum_{r, t: t-r \leq q} \gamma_{r, t} & \leqslant \Delta(G) \cdot \sum_{r, t: t-r \leqslant q} P_{k}^{r} \cdot 2^{r} \cdot 2^{q} \\
& =\Delta(G) \cdot 2^{q} \sum_{r, t: t-r \leqslant q} P_{k}^{r} 2^{r} \\
& \approx \Delta(G) 2^{q} \operatorname{hom}\left(C_{2_{k}}, G\right)=(T \\
\sum_{r, t: t-r>q} \gamma_{r, t} & \leqslant \sum_{r, t: t-r>q} P_{k+1}^{t} \cdot k \cdot s 2^{r}=2^{t} \cdot 2^{-(t-r)} \\
& \lesssim k \cdot S \cdot 2^{-q} \sum_{r, t ; t-r) q} P_{k+1}^{t} 2^{t} \\
& \leqslant k \cdot S 2^{-q \text { nom }\left(C_{z_{k}}, G\right)=\text { III }}
\end{aligned}
$$

Total bad $\leqslant \sum_{r, t} \gamma_{r, t} \leqslant$ (I) + (II)
worst case (I) $=$ (I) $\Rightarrow 2^{q} \approx \sqrt{\frac{k \cdot 5 \operatorname{hom}\left(c_{k}, G\right)}{\Delta(G) \operatorname{hom}\left(c_{m-2}, G\right)}}$
$\rightarrow \Theta$

