

Lecture 22 "Rose" $H_{3,7}$ Def: (Cylindrical grid) Let k, l > 2 and define the (k,l)-cylindrical grid CK, e as follows. $V = \{ x_{i,j} : i \in [u], j \in [l] \}$ $E = \{ x_{i,j} \times_{i,j+1}, x_{i,j} \times_{i+1,j+1}, i \in [k], j \in [l-1], \dots, l \in [k], j \in [l-1], l \in [k], l \in [k$ where $X_{kri,j} = X_{i,j}$ for all jE[] j Ct, 2t-1 contains Gt, t as a subgraph. Obs identify 8

The $e_{x}(n, C_{k,l}) = O(n^{3/2})$ Def: Let R, k > 2. A collection & of Cik is R-rich if VCEG, VVEC, there are R 2k-cycles in & containing / extending Lem Given k, R > 2, there exists C = C(k, R) such that V n-vx graph G w./ Cn^{3/2} edges contain an R-rich collection of Czn. Pf (Len => Thm) Take R=k.l and apply Len We greedily grow a cylindrizal grid. · Step 1 Take arbitrary CEB, by R-Nich ZC² extending u Stepz extend C'-u2 u²

Pt (Len) By supersaturation, G constains > $\alpha (d(G))^{2k} \ge \alpha (Cn^{1/2})^{2k}$, where $\alpha \ge \Omega_{1}(k^{-k})$. Let Go be the cell. of all Cru's in G. We keep removing Pzu-, that lies in few Czu 6. 261 2622. 26t (final) = 6 Suppose Gi is defined. If FCEG; and a vertex u E C s.t. # cycles extending C-v is less than R, then remare all cycles in G: Containing C-V. · Note that each (2k-1)-vx path ((-v) is distinct ⇒ # cycles removed ≤ # P2k-1 · R $\leq R \cdot n \cdot \Delta(G)^{2k-2}$ • We need $2R \cdot n \cdot \Delta(G)^{2k-2} < \alpha(Cn^{2})^{2k}$ $2R \cdot n(KCn'^2)^{2k-2} < \alpha (Cn'^2)^{2k}$ K-almost veg C > 2 klogk

S Even cycle embedding without conflict ua dyatiz partitibuing. Janzer 1 Rainbow Turén # of even cycles , 2)" Pispf of a conj. Endo's - Simourits Lem 1 (lem 2,5 in 1)) Let k22 and G be a graph w./ a symm. bihary relation ~ defined over $\left| \right|^{2}$. Suppose $\forall (u,v) \in V^2$ and $\forall w \in V$ co has at most S neighbors Z s.t. $(u,v) \sim (u,z)$ => Then # C2k-honomorphisms (2e1,..., 2e1k) s.t. $(\chi_i, \chi_{i+1}) \sim (\chi_j, \chi_{j+1})$ for some $i \neq j$ is $\leq 32 \text{ k} \int \text{ks} \Delta(G) \cdot \text{hom}(C_{\text{k-2}}, G) \text{hom}(C_{\text{k}}, G)$ Ŵ

Advantage if dyatic partition/pigeonholingmembers 1): For each part, we can treat all there as if they are the same 2): # parts is logarithmic, very small. Pf. For rEN let · Pk = # Pk-homomorphisms whose endpts x, y satisfy hom (Pk, G) E[2", 2] (lengte-(k-1) m1k) x, y $P_{k+1}^{r} = \# P_{k+1}$ whose endpts x_{ij} satisfy hom $(P_{k+1}, G) \in [2^{r-1}, 2^{r}]$ (length-le walk) $hom(C_{2k-2},G) \ge \sum_{r} P_{k}^{r} \cdot 2^{r-1} \qquad ()$ By defn. $\sum_{k=1}^{n} \frac{x_{k}}{2k_{t}} \frac{y_{k}}{2k_{t}} \frac{y_{k}}{$ $hom\left(C_{\mathcal{H}_{k}},G\right) \geq \sum_{r} P_{k+r}^{r} 2^{r}$ · For r, t EN, let $Y_{\Gamma,+} = \# C_{\mathcal{U}_{\ell}} - hom \left(x_{1}, x_{2}, \cdots, x_{\mathcal{U}_{\ell}} \right)$ S.t. p hom $(P_k, G) \in [2^{r-1}, 2^r)$ $x_{1,x_{k+2}}$ hom (P_{k+1}, G) ∈ [2^{t-1}, 2^t)
x₂ × k+2
 Conflict occurs at $\exists 2 \leq i \leq k+1, \varkappa_1 \varkappa_2 \sim \varkappa_i \varkappa_{i+1}$ X1X2 ~ XiXitt Total #BAD Crehon = 2 8 r, t

Let us bound of, t from abase in two diff. ways. χ_{2k+1} χ_{2k+1} χ_{k+2} · first choose Pic-hom of type $r \longrightarrow (so \times, x_{uez} \text{ fixed})$ $\in P_{u}^{\Gamma} \text{ choices}$ $\cdot \text{ Choose } \times_{Z} \longrightarrow \in D(G)$ · Choose Pieti-han with given ends N2, Netz (blue then purple) $\rightarrow \leq 2^{t}$ $() \quad \forall_{r,t} \leq P_{k+1}^{t} \cdot k \cdot s \cdot 2^{r}$ · first Pktihom of type t (purple then blue) $\longrightarrow x_2, x_{k+2}$ fixed $\leq P_{k+1}^{\pm}$ Choose \varkappa_1 , $\leq k \cdot s$ Choose Pk-hom ce/ given end, N, Nuez WANT Bound $\sum_{r,t} \gamma_{r,t} \leq \sum_{r,t} P_{k} \cdot \Delta(G) \cdot 2^{t} C_{2k-2} \quad \text{up to}$ $= \Delta(G) \left(\sum_{r,t} P_{k} \cdot 2^{r} \right) 2^{t-r}$ t-r < 9 to be determined. Suppo Se

 $\sum_{r,t} \begin{cases} \delta_{r,t} \leq \Delta(G) \cdot \sum_{r,t:t-r \leq q} P_{u} \cdot 2 \cdot 2^{2} \\ r,t:t-r \leq q \end{cases}$ $= \Delta(G) \cdot 2^2 \sum_{r,t: t-r \leq 2} P_k^r 2^r$ $\approx \Delta(G) 2^2$ hom $(C_{2k}, G) = (I)$ $\sum_{r,t:} \begin{cases} 2 \\ \leq \\ r,t: \\ t-r>2 \end{cases} \xrightarrow{(2)} \sum_{r,t:} P_{k+1}^{t} \cdot k \cdot s \cdot 2 \xrightarrow{r} = \\ r,t: \\ t-r>2 \end{cases}$ r, t: t-r>2 $\lesssim k \cdot s \cdot 2^{-2} \sum_{\substack{r,t: t-r>g}} P_{ke_1} \cdot 2^t$ $\leq k \leq 2^{-2} hom (C_{2k}, G) \rightarrow (I)$ Total bad $\leq \sum_{r,t} V_{r,t} \leq D + D$ Worst case $T = D = 2^2 = \frac{1}{2} \int \frac{ks hom(C_{2k},G)}{\Delta(G) hom(C_{2k},G)}$