

Lecture 21

- Another application of [iterative C-S + Sidovenko]

Turan \# of the hypercube $=$ Janzer-Sudakov.
The \forall integer $d \geqslant 3$,

$$
\operatorname{ex}\left(n, Q_{d}\right)=O_{d}\left(n^{\left.2-\frac{1}{d-1}+\frac{1}{(d-1) 2^{d-1}}\right)}\right.
$$

Rok: Note that Q_{d} is $K_{3,3}$-free and d-reg, (hence Füred: $O\left(n^{2-1 / d}\right)$). Exponent here beats 2-1/d.

We shall illustrate the method via $d=3$ case. ie.

$$
e x\left(n, Q_{3}\right)=O\left(n^{2-3 / 8}\right)
$$

- U_{p} to symm, $\forall a_{i}, a_{j}, i \neq j$
the Q_{3}-hon mapping c_{i}, a_{j} to the same vertex is the 'largest' degenerate one;
let D_{2} be the count.
Let $D_{i}, i \in[4]$, be the how. Count of Q_{3}-how mapping i vas of $\left\{a_{1}, \ldots, a_{4}\right\}$
 (or $\left\{b_{1}, \ldots, b_{4}\right\}$) to one same vertex.

$$
D_{1}=\operatorname{hom}\left(Q_{3}, G\right), D_{4}=\operatorname{hom}\left(S_{4}, G\right)
$$

Idea：If there is injective（non－degenerate）．
Q－hon．\because
As D_{2} is the count of the largest deg．one， we man assume $\quad D_{2} \approx Q_{3}=D_{1}$

$$
\begin{gathered}
\qquad \begin{array}{c}
\\
D_{3} \approx-s \\
\approx Q_{3}=D_{1} \\
\downarrow C-s \\
n^{5} p^{4} \geqslant \delta_{4}=D_{4} \approx Q_{3} \geqslant \\
\Rightarrow p \leqslant n^{-3 / 8} \quad n^{8} p^{12}
\end{array} \quad . \quad \text { berk }
\end{gathered}
$$

Pf：Claim：$\quad D_{2}{ }^{2} \leqslant D_{1} \cdot D_{3}$

－Let f be a ham．of $a_{1} b_{3}$ and $a_{3} b_{1}$
－Let α_{f} be 井 extensions of f to a Rom．of

Let β_{f} be $\&$ extensions of f to a ham of

such that b_{2}, b_{3} got mapped to the same vertex．
Note that by symm．$\sum \alpha_{f}^{2}=D_{1}, \sum \beta_{f}^{2}=D_{3}$
and $\quad \sum \alpha_{f} \beta_{f}=D_{2}$.
\because
$C l \operatorname{an} \quad D_{3}^{2} \leqslant D_{2} \cdot D_{4}$
Pf: Let f be a ham.
 of $a_{1} b_{3} \cup a_{3} b_{1}$ such that b_{3}, b_{1} got mapped to the same vertex

- Let α_{f} be a extensions
of f to a nom. of

$$
\begin{aligned}
& D_{3}=\sum_{f} \alpha_{f} \beta_{f} \\
& D_{2}=\sum_{f} \alpha_{f}^{2}
\end{aligned}
$$

- Let β be $\#$ extensions

$$
D_{4}=\sum_{f}^{T} \beta_{f}^{2}
$$

such that b_{4}, b_{3} got mopped to the same vertex
Putting them together, we have

$$
\begin{array}{lll}
D_{2}^{2} \leqslant D_{1} \cdot D_{3} & \cdots(1) & D_{1}=Q_{3} \\
D_{3}^{2} \leqslant D_{2} \cdot D_{4} & \cdots(2) & Q_{4}=S_{4} \leqslant
\end{array}
$$

We assume $D_{2} \gtrsim \mathbb{Q}_{3}^{a}=D_{1}$

$$
\begin{aligned}
& \quad K \text {-dist }(1) \Rightarrow D_{3} \geqslant \frac{D_{2}^{2}}{D_{1}} \gtrsim D_{1} \\
& \Delta(G) \leqslant k \cdot p) \quad(2) \Rightarrow D_{4} \geqslant \frac{D_{3}^{2}}{D_{2}} \gtrsim D_{1}=Q_{3} \geqslant n^{8} p^{12} \\
& K^{4} n^{5} p^{4} \geqslant n \cdot \Delta(G)^{4} \geqslant S_{4} \geqslant
\end{aligned}
$$

$$
\cdots \Rightarrow p<\text { const } n^{-3 / 8} \quad \text { e }
$$

This weans $\quad D_{2} \leqslant \frac{1}{24} D_{1}=\frac{1}{24}$ hon $\left(Q_{3}, G\right)$

- By symm, total \# dey. Q_{3}-him

$$
i \leq 12 \cdot D_{2} \leqslant \frac{1}{2} \operatorname{hon}\left(Q_{3}, G\right)
$$

- Kim -Lee - L. - Tran $\left\{\begin{array}{c}\text { rainbow cycle } \\ \text { - supersaturation }\end{array}\right.$
- Janzer - Sudakov. con also do $\left\{\begin{array}{l}\text { hypercube } \\ \text { reftex.itie graphs }\end{array}\right.$
$[K L L T] ; \forall n$-vertex $G \quad 0.1$ ave, deg $d \geqslant 2 \cdot 10^{5} k^{3} n^{1 / k}$ contains $\geqslant \frac{1}{2}\left(2^{12} k\right)^{-k} \cdot d^{2 k}$ copies of $C_{2 k}$.
$[J-S] \quad \forall 1 \leq l<k / 2$, let $H_{l, k}$ be the bin. graph 0.1 pants $\binom{c_{k}}{l}$ and $\binom{\left.c_{k}\right]}{k-l}$ and two vertices $S \in\binom{[k]}{l}, T \in\binom{c k]}{k-l}$ form an edge if $S \subseteq T$ Let $d=\binom{k}{l}, \exists \varepsilon=\varepsilon(l, l)>0$ s.t.

$$
e x\left(n, H_{l, k}\right)=O\left(n^{2-1 / d-\varepsilon}\right)
$$

Note: $\quad H_{1,4}=Q_{3}$.

Def: $e^{*}(n, H)=\max$ \# edges in a properly edge-colored n-ux graph G w.l no rainbow copies of $H \in \mathcal{H}$.
$\zeta=$ fan n of all cycles.

$$
\text { - ex }(n, 6)=n-1
$$

Das-Lee-Sudakov: $\quad e^{*}(n, \zeta) \geqslant n \log _{2} n$
$[K L L T, J S]: \quad e x^{*}(n, \zeta)=O\left(n \log ^{2} n\right)$
OPEA: Is $e x^{*}(n, b)=\theta(n \log n)$?
Lower bound: Consider $G=Q_{t}$ hyperabe

$$
2^{t}=n, t=\log _{2} n, e(G)=n \log _{2} n
$$

Suffices to find a proper edge coloring of Q_{t} w./ no rainbow cycle.

Coloring by direction of the edge and note that every cycle in Q_{t} contains $\geqslant 2$ edges of the same direction.
§ An application of supersaturation
Let $G_{t, t}$ be the $t \times t$ grid.
Clearly as $C_{4} \subseteq G_{t, t} \Rightarrow$

$$
e x\left(n, G_{t, t}\right) \geqslant \Omega\left(n^{3 / 2}\right)
$$

$$
\begin{aligned}
& \text { The }(\text { Bradac -Jarzer-Sudakov-Tomon) } \\
& \forall t \in \mathbb{N}, \quad \operatorname{ex}\left(n, G_{t, t}\right)=\theta_{t}\left(n^{3 / 2}\right)
\end{aligned}
$$

Rama: The constants is $2^{O\left(t^{5}\right)}$
Here we give a much simpler pf, showing an upper bound of $O\left(2^{+\log t} \cdot n^{3 / 2}\right)$.
Idea

$$
k=4
$$

1) Find a good collection of $C_{2 k}$:

$$
\forall P_{2 k-1}
$$

nary extersings

