

Lecture 20
$\oint 3-\operatorname{dim}$ cube Q_{3}
-3-reg , bi

- Füredi \Rightarrow ex $\left(n, Q_{3}\right)=O\left(n^{2-1 / 3}\right)=O\left(n^{5 / 3}\right)$
- Note that $Q_{3}=K_{4,4} \backslash P M$

$$
K_{3,3} \text { free ! }
$$

$T h_{m} \quad e x\left(n, Q_{3}\right)=O\left(n^{8 / 5}\right)$
Rink : For lower bd, we only know $\geqslant n^{3 / 2}$

Idea: Supersaturation $\Rightarrow C_{4}$

- edge
 sitting in many C_{4}. many edges
- Find C_{6} in $G[N(x), N(y)]$

$$
\Rightarrow Q_{3}^{+}
$$

Pf: By E-Sim. regularisation trick, may assume G is K-almost reg. i.e.

$$
\begin{aligned}
& \text { Recall } \\
& n-v x \\
& d(G) \geqslant 2 \sqrt{n} \\
& \Rightarrow \frac{d(G)^{8}}{g}
\end{aligned}
$$

copies of C_{4}

$$
\begin{aligned}
& C n^{3 / 5} \leqslant \delta(G) \leqslant \Delta(G) \leqslant K \cdot \delta(G) \leqslant K \cdot C n^{3 / 5} \\
& \cdot S_{\text {upset }} \Rightarrow C_{4} \geqslant d^{4} / 8 \\
& d=d(G) \Rightarrow \exists x \text { e edge } \dot{d} \geqslant \frac{C_{4}}{e(G)} \geqslant \frac{d^{4} / 8}{d n / 2}
\end{aligned}
$$

$$
N(x) \quad \overparen{C}^{N(y)} \quad \text { many } c_{4,5} \geq \frac{C^{3}}{4} n^{4 / 5}
$$

$$
(A) \cdots>\operatorname{ex}\left(2 K_{d}, C_{b}\right)
$$

$$
G^{\prime}=G[N(x), N(y)] \quad(G \text { blip }
$$

$$
\# C_{y} \geq\{x, y\}=e\left(G^{\prime}\right)
$$

$$
N(x) \cap N(y)=\phi)
$$

G^{\prime} has $\leqslant 2 \Delta(G) \leqslant 2 K d$ vs
So $(*) \Rightarrow G^{\prime}$ has $G_{6} \Rightarrow G$ has Q_{3}^{+}

- Erdós-Simonovits reduction trick.

Given bap. H on pat set $x \cup Y$, $\mathrm{K}_{2} * \mathrm{H}$: new sip.

- add edge $x y$
- add al edges x, X
\qquad
\qquad y, Y.

$$
\text { egg. } Q_{3}^{+}=K_{2} * C_{6}
$$

Suppose we want up bd ex $\left(n, K_{2} * H\right)$.
and we know $e x(n, H)=O\left(n^{\alpha}\right)$ where $1<\alpha<2$.
Try d-reg
$G^{\prime}=G[\omega(x), N(y)]$
$e\left(G^{\prime}\right)=\#\left\{C_{y} \geq\{x, y\}\right.$

$\gtrsim \frac{d^{4}}{n d / 2} \approx \frac{d^{3}}{n}>d^{\alpha} \gtrsim \operatorname{ex}(2 d, H)$ $d^{3-\alpha}>n \quad d>n^{\frac{1}{3-\alpha}}$

$$
\Rightarrow \text { if } e(G)>d n=n^{1+\frac{1}{3-\alpha}}=n^{\frac{4-\alpha}{3-\alpha}}
$$

$$
\Rightarrow K_{2} * H
$$

Thm (Erdós-Sim)

$$
e x(n, H) \leqslant O\left(n^{\alpha}\right) \Rightarrow \operatorname{ex}\left(n, K_{2} * H\right)=O\left(n^{\frac{4-\alpha}{3-\alpha}}\right)
$$

$\delta 3^{r d} p p$ of Sidorenko

- Sidore
\&

$$
\begin{equation*}
\operatorname{ex}\left(n, c_{2 k}\right)=O\left(n^{1+1 / k}\right) \tag{0}
\end{equation*}
$$

- iterative Cawchyschward.
Idea: If most of $C_{2 k}$-hom are won-deg.
- So may assume positive fract of $C_{v_{k}}$ hom are degenerate:
if $2 k-2 \approx 2 k$ then usingiterative $C-S \Rightarrow 2 k$ in fact the most degenerte $C_{u_{k}}$-hom, i.e. S_{k}-hom. is comparable to $C_{u_{k}}$.hom

Sidoreako

$$
\begin{gathered}
n^{k+1} p^{k} \approx n \cdot \Delta(G)^{k} \geqslant \sum_{0} \approx n^{2 k} p^{2 k} \\
\Rightarrow p<n^{\frac{1}{k}-1}
\end{gathered}
$$

Illustrate this idea w./ $k=4$.
Show $\operatorname{ex}\left(n, C_{8}\right)=O\left(n^{1+1 / 4}\right)$
NTS Given n-ix $G: K$-dlmutt org $\Rightarrow C_{8}$

$$
\begin{aligned}
& \quad d \geqslant C \cdot n^{1 / 4} \\
& \therefore \quad p=\frac{d}{n} \approx C n^{-3 / 4}
\end{aligned}
$$

1) We can bd all deg. ones by

(i)

- There are only two types of largest deg. C8-hom

Shall bd (ii) by (i)
$f: P_{3}$-hon in G nnw

β_{f} : \# ext. of f Prom w./ endpts vi

$$
\operatorname{hom}(\Omega, G)^{2}=\left(\sum_{f} \alpha_{f} \beta_{f}\right)^{2}<\left(\sum_{f} \alpha_{f}^{2}\right):\left(\sum \beta_{f}^{2}\right)
$$

- Thus, we may aiscione

$$
\operatorname{hom}\left(q_{6}\right)=\Omega\left(\operatorname{lom}\left(C_{8}\right)\right)
$$

- Now we show

$$
\begin{aligned}
& =C_{8} \cdot C_{4} \\
& C_{6}=\Omega\left(C_{8}\right)
\end{aligned}
$$

α_{f} : \#ext, P_{5} ham $u \%$ end β v v, w \Rightarrow as $C_{6}=\Omega\left(C_{8}\right) \quad \beta_{f}$ fen P_{4}-hon as in picture. we get that $G_{4}^{9}=\Omega\left(C_{8}\right)=\Omega\left(C_{8}\right)$

Chase back $\cdots \Rightarrow$

$$
\begin{aligned}
& n^{s} p^{4} \geqslant \int_{0}^{0}=\Omega\left(C_{8}\right) \\
& \geqslant<n^{-3 / 4} \\
& \geqslant n^{8} p^{8}
\end{aligned}
$$

