

Lecture 17
Attempt $t=3$ case : $\operatorname{ex}\left(n, K_{3}^{(1)}\right)=\operatorname{ex}\left(n, C_{6}\right) \leqslant C n^{4 / 3}$.

- Consider the square Γ on A If \exists 'nice' Δ, then (\because)

Need to avoid BAD situation

Γ
$\leftarrow\left(\begin{array}{ll}\text { sufficient lond. } \\ \text { for finding } & 1-\text { sum d }\end{array}\right)$ $p=$ edge dusty of Γ
$G{ }^{n-n x}, C_{n}^{1 / 3}-r e g \Rightarrow C_{6} \subseteq G$. - u, typical $\approx \frac{d^{2}}{n}$

G

$$
\begin{aligned}
& d_{p}\left(u_{1}\right) \geqslant d^{2} \approx n^{2 / 3} \\
& -u_{2} \text { typical } \\
& d_{\Gamma}\left(u_{1} u_{2}\right) \approx \frac{d^{4}}{n} \approx n^{1 / 3}
\end{aligned}
$$

$$
d_{\Gamma}\left(u_{1}, u_{2}\right) \approx d_{\Gamma}\left(u_{1}\right) \cdot \frac{d^{2}}{n} \approx \frac{d^{4}}{n} \approx n^{1 / 3}
$$

\# bad uss to exclude in $N_{\Gamma}^{*}\left(u_{1}, u_{2}\right)$

$$
\leqslant d_{G}\left(u_{1}, u_{2}\right) \cdot \Delta(G)=O\left(d \cdot d_{G}\left(u_{1}, u_{2}\right)\right)
$$

Thus, if $d_{G}\left(u_{1}, u_{2}\right)=O(1)$, then we can greedily find u_{3}

This suggests that it is useful consider the square
Γ as a weighted where weights of u_{1}, u_{2} is $d_{G}\left(u_{1}, u_{2}\right)$ and we want to weight of $u_{1} u_{2}$ to be light. (ie. $O(1)$)
Goal op bd on $\operatorname{ex}\left(n, K_{t}^{(1)}\right)$
Def: Given a bip. G on $A \cup B$, the weighted Square of G is a weighted graph
W on un set A where $\forall u v \in\binom{A}{2}$

$$
w(u v)=d_{G}(u, v)
$$

- For $I l \leq A$, let

G

$$
W(u):=\sum_{u \cup \in\binom{u}{2}} W(u v)
$$

- Call an edge uv in $W \begin{cases}\text { heavy if } W(u v) \geqslant\binom{ t}{2} \\ \text { light if } 1 \leqslant W(u, v)<\binom{t}{2}\end{cases}$

Nice property of the square graphs

- By convexity \Longrightarrow the square graphs are locally dense

Lem 1. Dip G on $A \cup B$

- $|B|=n$
- min $\operatorname{deg} \geqslant \delta$ on us in A

$$
\Rightarrow \forall u \leq A \quad w \cdot / \quad|u| \geqslant \frac{2 n}{\delta},
$$

As each $u x \in B$ contributes

$$
W(u) \geqslant \frac{\delta^{2}}{2 n}\binom{|u|}{2}\left(d_{0}(b, u)\right)
$$

Pf: $\Rightarrow W(u)=\sum_{u \in \in\binom{u}{2}} W(u v)=\sum_{b \in B}\binom{d_{G}(b, U)}{2}$ we heme $\stackrel{\text { Convexity }}{\geqslant} n \cdot\left(\frac{\left(\sum_{b \in B} d_{G}(b, u)\right\rangle}{2} n\right)=n \cdot\left(\frac{\sum_{v \in U} d_{G}(u)}{n}\right)$

$$
\geqslant n \cdot\binom{\delta|u| / n}{2} \geqslant \frac{\delta^{2}}{2 n}\binom{|u|}{2} \text { as }|u| \geqslant \frac{2 n}{\delta}
$$

- No leary K_{t} in $W \Rightarrow$ positive fraction

Def: Denote by $W_{L} \subseteq W$ the of edges are light edges spanning subgrays of W consisting of all light edges

Lem 2 - bip G on $A \cup B$ \# light edges in W

- $|B|=n$
- $K_{t}^{(1)}$-free

$$
\Longrightarrow e\left(W_{L}\right) \geqslant \frac{W(A)}{4 t^{3}}
$$

- $W(A) \geqslant 8 t^{2} n$

Pf: $\quad G^{\text {is }} K_{t}^{(1)}-$ free $\Rightarrow W$ has no heavy K_{t}

In particular, $\forall b_{i} \in B$
Turán's the

\Rightarrow \# light edges in $N_{G}\left(b_{i}\right)$ is

$$
\geqslant(t-1)\left(\frac{d_{G}\left(b_{i}\right)}{t-1}\right) \geqslant \frac{d_{G}\left(b_{i}\right)^{2}}{4(t-1)}
$$

By double counting

$$
\begin{aligned}
& \text { - } W(A)=\sum_{i=1}^{n}\binom{d_{G}\left(b_{i}\right)}{2}=\sum_{i: d_{G}\left(b_{i}\right) \geqslant 2(t-1)}\binom{d_{G}\left(b_{i}\right)}{2} \\
& I \quad+\sum_{i: d_{G}\left(b_{i}\right)<2(t-1)}(\cdots) \\
& \left.\Rightarrow I \geqslant \frac{W(A)}{2}\right) \\
&
\end{aligned}
$$

$$
\sum_{i=d_{G}\left(b_{i}\right) \geqslant 2(t-1)}\binom{d_{G}\left(b_{i}\right)}{2} \geqslant \frac{W(A)}{2}
$$

- As every light edge by deft lies in $\leq\binom{ t}{2}$ of the sets

$$
N_{G}\left(b_{i}\right)
$$

\Rightarrow \# total light cages is at least

(∇)

$$
\geqslant \frac{1}{\binom{t}{2}} \sum_{i=d_{G}\left(b_{i}\right) \geqslant 2(t-1)} \frac{d_{G}\left(b_{i}\right)^{2}}{4(t-1)} \geqslant \frac{(Q)}{4 t^{3}}
$$

Cor 3 - bip. G on $A \cup B$

- $|B|=n$
- $K_{t}^{(1)}$-free

$$
\Rightarrow
$$

$\forall u \leq A \quad$ w./ $|u| \geqslant 8 t n / \delta$

$$
e\left(W_{L}[u]\right) \geqslant \frac{\delta^{2}}{8 t^{3} n}\binom{u}{2}
$$

- min deg $\geqslant \delta$ on uss in A

Pf $\cdot \operatorname{Lem} 1 \Rightarrow W(u) \geqslant \frac{\delta^{2}}{2 n}\binom{|u|}{2} \geqslant 8 t^{2} n$

- Apply Lem 2 on $G[U \cup B]$ (i)

Using Standard regularisation lem (like the Erdós-Simonarits one we may work w./ balanced almost regular graphs.

The (Janzer) For every $K \geqslant 1$ and $t \geqslant 3$ $\exists c=c(K, t)$ and $n_{0}=n_{0}(k, t)$ st. If $\forall n \geqslant n_{0}$.
\forall dip G on $A \cup B$

- $|B|=n, \frac{n}{2} \leqslant|A| \leqslant 2 n$
- K-almost regular

$$
\Rightarrow \exists K_{t}^{(1)} \subseteq G
$$

$$
\begin{aligned}
& \delta \leqslant d_{G}(v) \leqslant K \delta \\
& \delta \geqslant c n^{\frac{t-2}{2 t-3}}
\end{aligned}
$$

Pf: We shall find distinct uss $u_{1}, \ldots, u_{t-1} \in \mathbb{A}$
st. (i) each $u_{i} u_{j} \in W_{L}$ is a light edge;
(ii) \forall distinct $i, j, k, \underset{\text { common neighbrhd }}{N^{*}\left(u_{i}, u_{j}, u_{k}\right)}=\phi$
(iii) $\forall i \in[t-1],\left|N_{W_{L}}^{*}\left(u_{1}, \cdots, u_{i}\right)\right| \geqslant\left(\frac{\delta^{2}}{32 t^{3} n}\right)^{i}|A|$

RoK: $\operatorname{Pr}(u \sim v$ in $w) \approx \delta^{2} / n$
So $\Omega\left(\left(\frac{\delta^{2}}{n}\right)^{i}|A|\right)$ is what we would expect.

Suppose we found such $u_{1}, \cdots, u_{t-1} \in \mathbb{A}$.
Write $V=N_{W_{L}}^{*}\left(u_{1}, \ldots, u_{i-1}\right)$

- By (iii), $|v| \geqslant\left(\frac{\delta^{2}}{32 t^{3} n}\right)^{t-1}|A|$

Let B be the set of (bad) us in V that has a common neigubr (in G) w. / some pair $u_{i} u_{j}$.

Calculation

$$
|B| \leqslant\binom{ t-1}{2}\binom{t}{2}<\delta<|V|
$$

$$
t=4
$$

\# pairs $u_{i} u_{j} d_{G}\left(u_{i}, u_{j}\right)$
Pick $v \in V \backslash B, \quad u_{1}, \cdots, u_{t-1}, v \Rightarrow K_{t}^{(1)}$.

- $u_{1} u_{2}, \cdots, u_{t-1} \Rightarrow K_{t-1}^{(1)}$ by (ii)
- by choice of $v \notin B$ and (ii)

