

Lecture 16
\oint Random zooming
Idea: Randomly 200 m into an asymmetric subgraph and do the emisedding using the created asymmetry.

Prop 1. $H=(A \cup B, E(H))$

- h-vertex

$\Rightarrow H E G$

If: Take a maximal partial coloring $\varphi: U \longrightarrow\binom{w}{r}$ st.

- if $\varphi(u)=R$, then $R \subseteq N(u)$;
- every color class $\varphi^{-1}(R)$ has size $\leq h$;
- all color classes are pairwise disjoint.
As $|u|>h\binom{|w|}{r}, b$
some vertex $b \in U$ is uncolored.

Consider an h-subset $B^{\prime} \subseteq N(b)$. Note that, for each color $R \in\binom{B^{\prime}}{r}$, $\left|\varphi^{-1}(R)\right|=h$, for otherwise we could have color the $v_{x} b$ wal color R, \sum max.madity of φ.

As all color classes are pairwise disjoint, we can greedily embed H as follows.

- Let f be an embedding $B \xrightarrow{\text { into }} B^{\prime}$

- $\forall a \in A$, let $R \in\binom{B^{\prime}}{r}$ be an reset containing $N_{H}(a) \longrightarrow$ embed a to an unused ix in $\varphi^{-1}(R)$

The (GF-H-P-W: Disjoint Bomaphic balanced clique subdivision) Let $d \geqslant \max \left\{40\right.$, in ${ }^{\prime}$ and G be a lip. graph on partite sets UuW st. every u in U has $d e g \geqslant d$ in W.

$$
\text { If } \frac{1}{2|w|}\left(\frac{|u|}{4 h}\right)^{1 / r} \cdot \frac{d}{2} \geqslant \max \{20, h\}
$$

\Rightarrow then G contains any hrux bip. H w./ max. deg r on one part.
Pf: We shall find appropriate subsets $U^{\prime} \subseteq u, w^{\prime} \subseteq w$ to invoke the previous prop.

- Let $p:=\frac{1}{2|w|}\left(\frac{|u|}{4 h}\right)^{1 / r}$ If $|u|>4 h(2|w|)^{r}$, then replace U be a subset of size exactly $4 h(2|w|)^{r}$, M still holds and $p \leq 1$.
- Let $W^{\prime} \subseteq W$ be a random subset of W where each vex of W is included w./ poos. P indep. of others.
- For $u \in U$, let $X_{u}=d_{G}\left(u, W^{\prime}\right)$ sum of index.
Bern. random var.

$$
=\sum_{\omega \in N(u)} \mathbb{1}_{\left\{\omega \in w^{\prime}\right\}}
$$

$$
\mathbb{E} X_{u}=p \cdot d(u) \geqslant \rho d
$$

$$
\begin{cases}\text { olow-tail chernoff } \Rightarrow & \operatorname{Pr}\left(X_{u}<p d / 2\right) \leq \exp (-P d / 12) \leqslant 1 / 4 \\ p d / 12 \geqslant 2 & \text { for each } u \in U .\end{cases}
$$

- Let $U^{\prime}=\left\{u \in U: X_{u} \geqslant \mathrm{Pd} / 2\right\}$

$$
\Rightarrow \mathbb{E}\left|U^{\prime}\right|=|U| \cdot \operatorname{Pr}\left(X_{u} \geqslant P d / 2\right) \geqslant \frac{3|U|}{4}
$$

- Suppose $q=\operatorname{Pr}\left(\left|u^{\prime}\right|<|u| / 4\right)>1 / 2$

$$
\begin{aligned}
\Rightarrow \mathbb{E}\left|u^{\prime}\right| \leqslant q|u| / 4+(1-q)|u| & =|u|\left(1-\frac{3 q}{4}\right) \\
& \leqslant 5 / u \mid / 8
\end{aligned}
$$

So $\operatorname{Pr}\left(\left|u^{\prime}\right|<|u| / 4\right) \leqslant 1 / 2$

- Now, as $|w| \geqslant d \Rightarrow \mathbb{E}\left|w^{\prime}\right|=p|w| \geqslant p d \geqslant 40$
upper tail Chernoff $\Rightarrow \operatorname{Pr}\left(\left|w^{\prime}\right|>2 p|w|\right) \leqslant \exp (-p|w| / 3)$

$$
\leqslant 1 / 4
$$

Thus, $\quad \operatorname{Pr}\left(\left|w^{\prime}\right|>2 p|w|\right)+\operatorname{Pr}\left(\left|u^{\prime}\right|<|u| / 4\right)<1$
Therefore, \exists a choice of W^{\prime} st.

$$
\begin{aligned}
& \left|u^{\prime}\right| \geqslant|u| / 4 \\
& \left|w^{\prime}\right| \leqslant 2 p|w|=\left(\frac{|u|}{4 h}\right)^{1 / r}
\end{aligned}
$$

- Choice of $U^{\prime} \Rightarrow$ us in U^{\prime} have deg $\geqslant \frac{P d}{2} \geqslant h$

$$
\begin{aligned}
& \left|u^{\prime}\right| \geqslant|u| / 4 \geqslant h\left|w^{\prime}\right|^{r}>h\binom{\left|w^{\prime}\right|}{r} \\
& \text { Prop } \rightarrow G\left(u^{\prime}, w^{\prime}\right)
\end{aligned}
$$

Exercise If H is a bip. on $A \cup B$

- uss in A have deg $\leqslant r$, and
- H has no $K_{s, r}$ w./ the s-ix part in W^{\prime}.
 in A.

Improve prop 1 to $|U|>s\binom{(\omega)}{r}$

- Thm to $(\Gamma) \frac{1}{2|w|}\left(\frac{|u|}{2 s}\right)^{1 / r} \cdot \frac{d}{2} \geqslant \max \left\{2_{0}, h\right\}$.

Note that 1-subdivision of K_{t} has no $K_{2,2}$.
Exercise $\forall n-w x \quad c n^{2}$ edges

$$
\Rightarrow \exists T K_{t}^{(1)} \quad w / \quad t \geqslant \Omega(c \sqrt{n})
$$

Exercise: The \Rightarrow F.AKS.
δ Improving F-AKS
[FAKS] $H \begin{gathered}\text { one part } \\ \text { deg } \leq r\end{gathered} \Rightarrow \operatorname{ex}(n, H)=O\left(n^{2-1 / r}\right)$

Still open for any $r \geqslant 3$.
$r=2$ Case every such $H\left(\underset{\substack{- \text { a td } \\ 2}}{\left(K_{2, \text {-tues }}\right)}\right.$ is a subgraph of 1 -subdivision of

$$
K_{t}(t \geqslant|B|)
$$

- $r=2$ case proved by Conlon-Lee. we present a better bd by Janzer.
The $\left(J_{\text {anzer }}\right) \forall t \geqslant 3$, ex $\left(n, K_{t}^{(\prime)}\right)=O\left(n^{\frac{3}{2}-\frac{1}{4 t-6}}\right)$
Rok . tight $t=3$ ex $\left(n, C_{6}\right)=\theta\left(n^{4 / 3}\right)$
$C_{6} \quad K_{3}^{(1)}=C_{6}$
- By prob. constr. ex $\left(n, K_{t}^{(1)}\right)=\Omega\left(n^{\frac{3}{2}-\frac{t-3 / 2}{t^{2}-t-1}}\right)$

For example, $t=4$:

$$
\Omega\left(n^{\frac{3}{2}-\frac{5}{22}}\right) \leqslant e_{x}\left(n, K_{4}^{(1)}\right) \leqslant O\left(n^{\frac{3}{2}-\frac{1}{10}}\right)=O\left(n^{\frac{7}{5}}\right)
$$

polys.
Q: Better construction for $K_{4}^{(1)}$ than deletion.

