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Abstract. In this note, we learn about expander graphs. The materials on this note
are based on the following sources: [3, 4, 8, 9]

1. Recapitulation

Last year, we learned about expander graphs. In short, expanders are d-regular graphs
which satisfies the following loosely equivalent properties.

(1) Combinatorial property: Any vertex set U has comparatively large boundary (ei-
ther the edge boundary |E(U,U)| or the vertex boundary NG(U)).

(2) Probabilistic property: Random walk mixes fast, i.e. k-th vertex on the random
walk on the graph is almost as if we choose a vertex at random.

(3) Algebraic property: All eigenvalues of the adjacency matrix except the largest one
are small.

Definition 1.1. For S ⊆ V (G), the edge boundary ∂S = E(S, S) is the set of edges from
S to S = V \ S. The edge expansion ratio of G, denoted by h(G), is defined as

h(G) = min
S,|S|≤n/2

|∂S|
|S|

.

Definition 1.2. The adjacency matrix of a graph G, denoted by A = A(G) is an n × n
matrix whose (u, v)-entry is the number of edges in G between vertex u and vertex v. As it
is real symmetric matrix, it has n real eigenvalues λ1 ≥ · · · ≥ λn. If a d-regular graph G
has one eigenvalue d and rest of the eigenvalues in [−αd, αd], it is called a (n, d, α)-graph,
or an α-expander.

We prove that d−λ2
2 ≤ h(G) ≤

√
2d(d− λ2) holds, showing the combinatorial property

and algebraic property are related.
Also, we consider the random walks. It starts at a vertex v chosen according to the

initial probability distribution p0 ∈ Rn over the vertex set [n] = V (G) of G, and it moves
to a neighbor chosen uniformly at random. This yields a probability distribution of the
t-th vertex on the walk as (1dA)tp0. We showed that

∥pt − 1∥1 = ∥(1
d
A)tp− 1∥1 ≤ αt√n

holds for a random walk over an (n, d, α)-graph where 1 = (1, 1, . . . , 1)T . This shows that
the second aspect is also related with others.

We also showed that such an expander is useful for constructions of good error correcting
codes, and error reduction on randomized algorithms. We also see some ways to construct
expander graphs.

This year, we will introduce the (normalized) Laplacian matrix of graphs which enables
us to deal with non-regular graphs. Using this concept, we can extend the definition of
expanders to more general notion of graph approximation. We will also learn more ways to
construct almost best possible expanders using some concept called eigenvalue interlacing.
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2. Laplacian

While learning about the adjacency matrix of graphs and its spectral properties, two
questions naturally arise.

• Is the adjacency matrix of graph the most natural notion?
• Is the assumption of graph being regular important?

The theories we introduced in the last year’s lecture were built on the assumption that
our graph is regular. So, the second question, whether we can also deal with non-regular
graphs, is very natural. However, if we try to deal with non-regular graphs, the analysis
we did before does not work. For example, once we consider the random walks over non-
regular graphs, then the adjacency matrix AG no longer captures how the random walk
behaves. To overcome this (and other) issues, we introduce the following notion of graph
Laplacians. Also, we will consider more general notion of edge-weighted graphs where
each edge ij of the graph G has a positive edge weight wi,j ∈ R+ on each edge ij.

Definition 2.1. Let D = DG be an n by n diagonal matrix where Di,i = dG(i) is the
degree of the vertex i, and let A = AG be the adjacency graph of a weighted graph G, where
Ai,j = wi,j where wi,j is the weight on the edge ij in G. The matrix L = LG = D−AG is
called the Laplacian matrix of G, and the matrix L̃ = L̃G = D−1/2LD−1/2 is called the
normalized Laplacian matrix of G.

There are several reasons why these matrices are useful and important. In particular,
we can list the following two reasons.

• This is an analogue of the Laplacian over continuous spaces, measuring ‘smoothness
of functions’ defined over graphs/spaces.

• Together with the normalized Laplacian, many theories generalize to non-regular
graphs.

Let’s convince ourselves that Laplacian is a very natural concept.

Why do we want to measure ‘smoothness’ of functions defined over graphs, and how do
we define this ‘smoothness’? Let’s consider one example.

In recent years, the need for analyzing high dimensional data sets have increased a lot.
Here, high dimensional data are defined as data in which the number of features (variables
observed), are close to or larger than the number of observations (or data points). For
example, when we have patients in hospital, there are a lot of data we need from a patient,
including blood pressure, heart rate, BMI, Cholesterol level, Body fat, respiratory rate,
red cell mass, etc. If the number of features is small, it is relatively easier to analyze the
data. However, if the number of features is large, it becomes difficult to analyze this data
set.

On the other hand, in many cases, these features are not completely independent of each
other. For example, blood pressure level is somehow predictable from cholesterol level in
blood, age, and BMI measurements. So, there are some relations between these features,
which allow us to analyze the data more efficiently. These relations between the features
can be captured using (edge-weighted) graph having the features as vertices, and edge
representing some relations between the features. High weights represents strong relations
while small weight represents weak relations. In this aspect, assuming the features have
real values, each data correspond to a function f ∈ RV .

Let’s assume that we want to do image-filtering. We have an original image of, say,
n pixels, but some noise has been added to the image. How can we filter this image to
obtain a ‘better-looking’ image? Of course, ‘better-looking’ is not well-defined term. If
you think about it, the noise introduces some unnatural “sharpness” to the image, which
makes us to notice the noise. So, if we make the picture somehow “smooth”, then it
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Figure 1. An example by Shuman, Narang, Frossard, Ortega and Vandergheynst[8]

becomes better. This is what image filtering is for. So, a most basic way to filter an image
is to replace a pixel by the average of its neighborhood. For example, if we have a pixel of
value 2 surrounded by eight pixels of value 1, then we replace the value 2 by the average
(2 + 8 ∗ 1)/9 = 10/9. This will results in a bit blurred picture, but the effects of noises
are somewhat smoothed out. More generally, we can improve the quality of the image by
considering some weighted average putting more weights on closer pixel according to the
normal distribution. This is called the Gaussian filter.

However, this approach does not take into account on the more information we have.
For example, a pixel can come from the face of a person, while a pixel right next to it
comes from the background sky. We do not want to average out these two pixels, which
introduces too much undesired blurr. How one can more efficiently deal with this? We
can consider a graph over the vertex set V of pixels. Each pixel has a real value, which
represents the color. (Usually a color requires three real numbers to represent, but assume
for simplicity that the color can be represented by one number). Then the original image
x ∈ RV is a function over the vertex set, and image with noise y ∈ RV is also a function
where y − x is the noise added. Based on y, one can consider a weighted graph G. We
put edges if two pixels i, j are close. More precisely, put an edge between a pixel i and
eight other pixels surrounding i. Also, if adjacent vertices have similar values, we put high
weights wi,j on the edge between them. If they have different values, then we put low
weight wi,j on the edge between them. (There are several ways to determine the weight
wi,j according to the value difference, but we will not specify them.) Then, depending on
how to determine wi,j , ∑

ij∈G
wi,j(y(i)− y(j))2 = yTLy
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somehow measures how ‘smooth’ the given image (function) y is. As the original image
is very likely to be more smooth than the noised image, we seek to find a function z ∈ RV

where zTLz is smaller or at least not too large. Of course, we want the z to be not too
far from y, so one can use some way called Tikhonov regularization to find a function z
satisfying

argminz{∥z− y∥22 + γzTLz},
where γ is a chosen constant. See the above Figure 1 from [8]. This shows that the
graph-based filtering produces a sharper image than traditional Gaussian filter method.

Moreover, if we solve this optimization problem, then the optimal solution is given by
N−1∑
ℓ=0

[
1

1 + γλℓ

]
⟨y,uℓ⟩uℓ

where λℓ is the ℓ-th eigenvalue of the Laplacian L and uℓ is the corresponding eigenvector.

Also, Laplacian of a graph is an analogue of the Laplacian over a smooth space Rn.
It is roughly a generalization of the second derivatives of a function. In many cases, one
can consider a graph embedded on a given space and consider this graph as an discretized
approximation of the space. So, if we have an analogue of the Laplacian in graphs, then
one can analyze the graphs instead of the space to learn more about the space.

As the Laplacian is the divergence of the gradient of the function, let’s figure out what
those are in graphs. For given a function f : Rn → R, the gradient is

∇f = (∂1f, ∂2f, . . . , ∂nf).

A concept similar to the partial derivative ∂1 at i is the difference f(i) − f(j) along the
edge ij divided by some ‘distance’ di,j between two vertices i and j. So, one can consider
the following incidence matrix K. The columns of K correspond to the vertices in order
(we assume that the vertices in V (G) = [n] are ordered) and the rows of K corresponded
to edges of G with order (this order can be arbitrary). For each edge ei = kh with k < h,
the entry Ki,j is defined as

Ki,j :=

 1/dk,h if j = k,
−1/dk,h if j = h,
0 otherwise

(2.1)

Then Kf is an analogue of ∇f .
Also, recall that the divergence on a multivariate differentiable vector field F measures

the amount of ‘flow’ coming out/into a point when the flow is determined by the vector
field. When F = (F1, . . . ,Fn), we have

divF = ∂1F1 + · · ·+ ∂nFn

The vector field should correspond to a function defined over edges (which is same as
‘direction’). As the values flows linearly over edges, the ∂eFe for an edge e should be the
value of e divided by the length of e (which measures how fast the flows are coming into
the vertex). Then divergence at a vertex is simply the summation of the values on the
edges divided by di,j , i.e. divg(i) =

∑
j∈N(i) g(ji)/di,j , where g(ji) = −g(ij) if the edge

ij appears in the function g as the order (j, i). Indeed, this is precisely the matrix KTg.
Hence, we can see that it is very natural to define the Laplacian as

KTK = D −AG,

where G has the weights wi,j =
1

d2i,j
for each edge ij. Hence, Laplacian matrix is a graph

analogue of the Laplacian of continuous functions. Again, this is measuring how smooth
a function defined over the graph is.
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Lastly, let’s see how normalized Laplacian helps us to deal with non-regular graphs
in some situations. We will consider the random walks. Recall the definition of the
random walk. For a given (not necessarily regular) edge-weighted graph G, we begin at
some vertex. In each time step, we move to another vertex. When it moves, it moves
to a neighbor with probability proportional to its weight, i.e. it moves from i to j with
probability wi,j

d(i) where d(i) =
∑

j∈N(i)wi,j is the weighted degree of the vertex. (If the
graph is not weighted, we treat each edge as an edge with weight 1 and moves from i to j
with probability wi,j

2d(i) .)
Let pt ∈ Rn be the probability distribution at time t where pt(i) is the probability of

being at the vertex i at time t. As this is a probability distribution, we have
∑

i pt(i) = 1.
If the walk starts at i, then we consider p0 = 1{i} being the characteristic vector where
all probability is concentrated on the vertex i. The probability of being at a vertex i at
time t+1 is the sum over the neighbors j of i of the probability that the walk was at j at
time t times the probability that it moves from j to i in time t+ 1. Hence

pt+1(i) =
∑

ij∈E(G)

w(i, j)

d(j)
pt(j). (2.2)

Here d(j) is the weighted degree of j. This yields the walk matrix W := AGD
−1. Let

W̃ = 1
2I+

1
2W be the walk matrix for the lazy walk. (For lazy walk, we have an additional

assumption that we stay at the vertex with probability 1/2 in each step.)
It is natural to analyze the random walks by studying the spectral aspects of W or W̃ .

However, one problem is that this matrix is not symmetric, so we can’t apply spectral
theorem to obtain real eigenvalues and orthonormal eigenvectors. However, we can still
show that this matrix has n real eigenvalues and real eigenvectors, while their eigenvectors
might not be mutually orthogonal. For this, we consider the following the normalized
adjacency matrix instead. This is a symmetric matrix, so it has real eigenvalues and
orthonormal eigenvectors. Let

Ã = D−1/2WD1/2 = D−1/2AD−1/2.

In random graphs, what we are interested in is the stationary distrubition. At the sta-
tionary distribution Ã acts as if it is the identity I. So, considering the following matrix
makes sense.

I − Ã = I −D−1/2AD−1/2 = D−1/2(D −A)D−1/2 = L̃G.

Moreover, I − Ã is a positive semidefinite matrix while Ã is not. So analysis are more
convenient in many cases.

Up to multiplying D−1/2 on both sides, the normalized Laplacian captures the essence
of the behaviour of random walks.

Proposition 2.2. The vector u is an eigenvector of L̃ of the eigenvalue λ if and only if
D1/2u is an eigenvector of W of the eigenvalue 1− λ.

Proof. Note that D1/2L̃ = (D − AG)D
−1/2 = (I −W )D1/2, so D1/2L̃u = (I −W )D1/2u.

Hence, L̃u = λu if and only if

D1/2L̃u = D1/2λu = λ(D1/2u) = (I −W )D1/2u.

□

Also, it is easy to see that W̃ has the same eigenvectors with W . Moreover, assuming G
being connected the degree vector d is the Perron vector (the eigenvector for the largest
eigenvalue whose all entries are positive) of W of eigenvalue 1 as

AD−1d = A1 = d.
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So, the Peron-Frobenius theorem yields that the eigenvalues of W lie between −1 and 1,
and the eigenvalues of L̃ lies between 0 and 2. It is also not difficult to prove that the
graph is bipartite if and only if 2 is an eigenvalue of L̃.

For lazy random walks, W̃ = 1
2I +

1
2W has eigenvalues

1 = ω1 ≥ · · · ≥ ωn ≥ 0.

By the above proposition, we know that Ã has the Perron vector d1/2 where d1/2(i) =

d(i)1/2.
One reason why we consider a lazy random walk is that it has an advantage over

random walk. The lazy walk on a connected graph always converges to one distribution:
the stationary distribution. For non-lazy one, the distribution might not converge on
bipartite graphs. We already see that the following is an eigenvector for W = AD−1.

π :=
1

1Td
d.

Let v1, . . . ,vn be the orthonormal eigenvectors of L̃ corresponding to eigenvalues 0 =

λ1 = 2 − 2w1 ≤ · · · ≤ λn = 2 − 2wn. If we just consider the eigenvectors of W̃ , they are
not orthogonal each other, so we consider the eigenvectors of L̃. Then W̃ has eigenvalues
ω1, . . . , ωn. For an initial distribution p0, we can find constants ci such that

D−1/2p0 =
∑
i

civi.

Here, ci = vT
i D

−1/2p0. Especially for i = 1, we have

c1 = vT
1 D

−1/2p0 =
(d1/2)T

∥d1/2∥
(D−1/2p0) =

1Tp0

∥d1/2∥
=

1

∥d1/2∥
.

The last equality holds as p0 is a probability distribution. Then

pt = W̃ tp0 = D1/2D−1/2W̃ tD1/2D−1/2p0

= D1/2(D−1/2W̃D1/2)tD−1/2p0

= D1/2(
1

2
I +

1

2
Ã)t

∑
i

civi

= D1/2
∑
i

ωt
icivi

= D1/2c1v1 +D1/2
∑
i≥2

wt
icivi.

We have the final equality as we have ω1 = 1. As 0 ≤ ωi < 1 for all i ≥ 2, the right-hand
term go to zero as t goes to infinity. Here, as D1/2v1 is a scalar multiple of the Perron
vector d of W , v1 =

d1/2

∥d1/2∥ , so

D1/2c1v1 = D1/2(
1

∥d1/2∥
)
d1/2

∥d1/2∥
=

d

∥d1/2∥2
=

d∑
i d(i)

= π.

From this, we can suspect that how fast the convergence happens depends on ω2 =
1− λ2/2. So, as λ2 is away from 0, the convergence get faster. There are several possible
ways to measure the speed of convergence. We will consider pointwise distance as follows.

Theorem 2.3. For all i, j and t, if p0 = δi = 1{i}, then

|pt(j)− π(j)| ≤

√
d(j)

d(i)
ωt
2.
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Proof. Note that pt(j) = δTj pt. Then as above, we know

pt(j) = δTj pt = π(j) + δTj D
1/2
∑
ℓ≥2

ωt
ℓcℓvℓ.

So, we want the upper bound on the size of δTj D1/2
∑

ℓ≥2 ω
t
ℓcℓvℓ. Recall that

ci = vT
i D

1/2δi =
1√
d(i)

vT
i δi.

So, δTj D1/2
∑

ℓ≥2 ω
t
ℓcℓvℓ =

√
d(j)
d(i) δ

T
j

∑
ℓ≥2w

t
ℓvℓ(v

T
ℓ δℓ). Then we have

|δTj
∑
ℓ≥2

ωt
ℓvℓv

T
i δi| = |

∑
ℓ≥2

ωt
ℓ(δ

T
j vℓ)(v

T
i δi)| ≤ ωt

2

∑
ℓ≥1

|δTj vℓ||vT
i δi|

≤ ωt
2

√∑
i≥1

(δTj vi)2
√∑

i≥1

(δTi vi)2

= ωT
2 ∥δj∥∥δi∥ = ωt

2.

□
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3. Spectral sparsifiers

As we saw before, the Laplacian captures many properties of the graph G. In the ex-
ample of image processing, the computation of the quadratic form xTLGx was important.
Also, the following theorem shows that this quadratic form captures the essence of the
eigenvalues of the Laplacian matrix. Here, the expression xTMx

xTx
is called the Rayleigh

quotient of x with respect to M .

Theorem 3.1 (Courant-Fischer Theorem). Let M be a symmetric matrix with eigenvalues
λ1 ≤ · · · ≤ λn. Then

λk = max
S⊆Rn

dim(S)=n−k+1

min
x∈S−{0}

xTMx

xTx
= min

S⊆Rn

dim(S)=k

max
x∈S−{0}

xTMx

xTx
,

where the maximization and the minimization are over subspaces S and T of Rn.

Similarly, in many cases, computing the quadratic form xTLGx is useful and it requires
Θ(n2) multiplications of numbers in general.

However, if LG has O(n) many non-zero entries, then we can do this computation more
efficient way in O(n) multiplications. This motivates to find a graph H with small number
of edges, where LH can ‘approximates’ LG for a given graph G. Of course, finding such a
graph H can take quite a time, but if we have to compute xTLGx many times for different
vectors x, finding one such a graph H and compute xTLHx many times can be much more
efficient.

For a d-regular graph G, when the adjacency matrix of G has eigenvalues µ1 ≥ · · · ≥ µn,
the Laplacian eigenvalues are exactly λi = d − µi. So being an expander is equivalent to
|d− λi| ≤ εd for i ≥ 2. As LKn has eigenvalues 0, n, n, . . . , n this is also equivalent to

∥LG − d

n
LKn∥ ≤ εd

where we write ∥M∥ = maxx
∥Mx∥
∥x∥ for the operator norm. This is just the largest eigen-

value of the matrix if M is a symmetric matrix.

Definition 3.2. We say that G is an ε-approximation of a graph H if

(1− ε)H ≼ G ≼ (1 + ε)H,

where H ≼ G means xTLHx ≤ xTLGx for all x.

We can check the following proposition.

Proposition 3.3. A d-regular graph G is an ε-expander if and only if it is an ε-
approximation of d

nKn.

Proof. If G is an ε-expander, then for all x ∈ Rn that are orthogonal to 1 = (1, 1, . . . , 1)T ,
we have

(1− ε)dxTx ≤ xTLGx ≤ (1 + ε)dxTx.

However, as we have xTL d
n
Kn

xT = dxTx, so G is an ε-approximation of d
nKn.

The other direction also follows as

(1− ε)LH ≼ LG ≼ (1 + ε)LH

implies
−εLH ≼ LG − LH ≼ εLH .

With H = d
nKn, LH has all eigenvalues d or 0, so we have ∥LG − LH∥ ≤ εd, hence G is

an ε-expander. □



AN INTRODUCTION TO EXPANDERS II 9

So, when the graph being regular is not so important, one can consider a (not neces-
sarily regular) graph which is an approximation of a complete graph instead of a regular
expander. This also suggests that we can consider sparse approximation of graphs other
than the complete graph. For example, a regular bipartite graphs approximating a com-
plete bipartite graphs are called bipartite expanders, and we saw last year that they are
useful.

What about more general graphs? Can we find a sparse graph approximating any given
graph G? If H is an ε-approximation of G, then they share many characteristics.

• the eigenvalues of the graphs are similar.
• the edge-boundaries

∑
ij∈E(S,S)wi,j of all sets are similar, as these are given by

1SLG1S .
• all solutions of linear equations in two matrices LH , LG are similar.

3.1. Random subgraph. The proof in this subsection is from [?]. One of the most
natural approaches to construct a sparse approximation of G is that, for each edge ab, we
independently at random choose the edge with some probability pab. If ab is included, then
we give it weight wa,b/pa,b. By dividing by pa,b, we preserves the matrix ‘in expectation’. To
see this, let La,b be the Laplacian of the single edge ab, then we have LG =

∑
ab∈E wa,bLa,b

while
E[LH ] =

∑
ab∈E

pa,b(wa,b/pa,b)La,b = LG.

We collect the following matrix Chernoff bound. For a given matrix X, we write λk(X)
to denote the k-th smallest eigenvalue, and λmin and λmax to denote the smallest and
largest eigenvalues.

Theorem 3.4. Let X1, . . . , Xm be independent random n-dimensional symmetric positive
semidefinitie matrices so that ∥Xi∥ ≤ R almost surely holds. Let X =

∑
iXi and let µmin

and µmax be the minimum and maximum eigenvalues of E[X] =
∑

i E[Xi]. Then we have

Pr[λmin(X) ≤ (1− ε)µmin] ≤ n exp(−ε2µmin

2R
) for 0 < ε < 1,

Pr[λmax(X) ≤ (1 + ε)µmax] ≤ n exp(−ε2µmax

3R
) for 0 < ε.

Note that the matrices X1, . . . , Xm can have different distributions. Before applying
the matrix Chernoff bound, we take a transformation so that µmin = µmax = 1. This will
make analysis easier, and allow us to deal with eigenvalues other than the largest and the
smallest ones. For positive definite matrices A and B, we know that A ≼ (1 + ε)B is
equivalent with B−1/2AB−1/2 ≼ (1 + ε)I. Even for positive semi-definite matrices, if A
and B has the same null spaces, we can do the same thing in their column space. So, we
have

LH ≼ (1 + ε)LG ⇐⇒ L
+/2
G LHL

+/2
G ≼ (1 + ε)L

+/2
G LGL

+/2
G .

where L
+/2
G is the square root of the Moore-Penrose pseudo-inverse of LG. Let Π =

L
+/2
G LGL

+/2
G , which is the projection matrix on to the range of LG. So it suffices to find

a graph H where L
+/2
G LHL

+/2
G is an ε-approximation of Π. As multiplication by a fixed

matrix is a linear operation and expectation commutes with linear operations, we know

E[L+/2
G LHL

+/2
G ] = L

+/2
G E[LH ]L

+/2
G = Π.

We will project all the vectors to the span of Π and carry out the analysis, then we can
assume that Π is in fact an identity.
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Let

Xa,b =

{
wa,b

pa,b
L
+/2
G LabL

+/2
G with probability pa,b

0 otherwise.

so that L
+/2
G LHL

+/2
G =

∑
ab∈E Xa,b. We want to choose the probability pa,b so that

pa,b =
1

R
wa,b∥L

+/2
G LabL

+/2
G ∥

holds for some R which we determine later. Then when an edge ab is chosen, we have
∥Xa,b∥ = R. We will see that for most of the edges ab, pa,b will be smaller than 1. If it is
at least 1, then we will later partition this edge into multi-edges of probability at most 1.

We define the leverage score of edge ℓa,b be the weight of the edge times the effective
resistance Reff(a, b) = (1a − 1b)

TL+
G(1a − 1b) between its endpoints, i.e.

ℓa,b = wa,b(1a − 1b)
TL+

G(1a − 1b).

Note that
∥L+/2

G LabL
+/2
G ∥ = ∥L+/2

G (1a−1b)
T (1a−1b)L

+/2
G ∥ = ∥(1a−1b)L

+/2
G L

+/2
G (1a−1b)

T ∥ = Reff(a, b).

It is known that the the leverage score of an edge equals the probability that the edge
appears in a random spanning tree chosen proportional to the weight

∏
ij∈E(T )wi,j of the

trees, so the sum of leverage score is n − 1. So, we have
∑

ab pa,b = n−1
R . We choose

R = ε2

3.5 lnn . Hence, there are at most 3.5ε−2n lnn edges ab with pa,b ≥ 1. For those
edges, split Xa,b into k = ⌊ ℓa,bR ⌋ random variables which appear as RL

+/2
G La,bL

+/2
G with

probability 1 and one more that appears as wa,b−Rk
pa,b−k L

+/2
G La,bL

+/2
G with the probability

pa,b/R − k. By using Chernoff bound on real numbers, the number of edges in H is at
most 4ε−2n lnn with high probability. Also we have∑

ab∈E
E[Xa,b] = Π.

Using matrix Chernoff bound, we have

Pr[λmax(
∑
ab

Xa,b) > 1 + ε] ≤ n exp(− ε2

3R
) ≤ n exp(−1.1 lnn) ≤ n−1/10.

For the lower bound, we can just consider on the vector spaces consisting of all vectors
orthogonal to the constant vector, so treat the smallest eigenvalue of Π to be 1. We then
find that

Pr[λmin(
∑
ab

Xa,b) < 1− ε] ≤ n exp(− ε2

2R
) ≤ n exp(−1.7 lnn) ≤ n−1/10.

Union bound yields the desired result.

3.2. Interlacing polynomials. The multiplicative log n term on the number of edges
naturally arises in the applications of the Chernoff bound. In order to remove this term, we
tackle this problem by using the method of eigenvalue interlacing. What does ‘interlacing’
means? Basic idea is to observe how eigenvalues changes when we add an edge to H. Once
we add an edge to H, then eigenvalues of H march forward together in a well-coordinated
way, which we call ‘interlacing’.

Definition 3.5. Let p ∈ R[x] be a polynomial of degree k ∈ {d − 1, d} with all real roots
α1 ≤ · · · ≤ αk and q ∈ R[x] be a polynomial of degree d with all real roots β1 ≤ · · · ≤ βd.
If k = d− 1, then we say p interlaces q if β1 ≤ α1 ≤ · · · ≤ αd−1 ≤ βd. If k = d, then we
say p interlaces Q if α1 ≤ β1 ≤ · · · ≤ αd ≤ βd.
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We say that a set {pi : i ∈ [n]} of real-rooted polynomials have a common interlacing
if there is a polynomial q ∈ R[x] that interlaces each pi. One of the key reason why
we consider this concept is the following lemma. Note that adding (δi − δj)

T (δi − δj)
to the Laplacian matrix LH yields the Laplacian LH+e where e is an edge of weight
1. So, studying the eigenvalue of A + vvT in terms of eigenvalues of A provides some
understanding on how the eigenvalues evolve when we add or remove edges.

Lemma 3.6. Let A be a symmetric matrix and let v be a vector. For a real number t
let pt(x) = χ(A + tvvT ). Then for t > 0, p0(x) interlaces pt(x) and there is a monic
polynomial q(x) of degree n− 1 so that for all t, pt(x) = χ(A)− tq(x).

Proof. Let λ1 ≤ · · · ≤ λn be the eigenvalues of A and µ1 ≤ · · · ≤ µn be the eigenvalues of
A+ tvvT . The Rayleigh quotient of A+ tvvT is always greater than or equal to the one
of A, so Courant-Fischer Theorem implies λi ≤ µi. On the other hand, Courant-Fischer
theorem states that

µi = max
dim(S)=n−i+1

min
x∈S−{0},∥x∥=1

xT (A+ tvvT )x

≤ max
dim(S)=n−i+1

min
x∈S,x⊥v=0,

∥x∥=1

xT (A+ vvT )x

≤ max
dim(S)=n−i+1

min
x∈S,x⊥v=0,

∥x∥=1

xTAx

≤ max
dim(S)=n−i

min
x∈S−{0},∥x∥=1

xTAx = λi+1.

The final inequality holds as S ∩ v⊥ has dimension either n − i + 1 or n − i. So, p0(x)
interlaces pt(x).

By rescaling t if necessary, we can assume that v is a unit vector. Note that we have

χ(A+ te1e
T
1 ) = det(xI −A− te1e

T
1 ) = det(xI −A)− tdet(xI(1) −A(1)) = χ(A)− tχ(A(1)),

where A(1) is the submatrix of A by removing its first column and row, and the polynomial
χ(A(1)) has degree n− 1.

Consider a rotation matrix Q with Qe1 = v with | det(Q)| = 1. Then

χ(A+ tvvT ) = χ(Q(A+ tvvT )QT ) = χ(QAQT + te1e
T
1 )

= χ(QAQT )− tq(x) = χ(A)− tq(x)

for some q(x) of degree n− 1. □

Why is interlacing important? As we mentioned, this describes how the eigenvalues
evolve when we add an edge by edge to a graph. Also, this concept is helpful to study
real-rooted polynomials, i.e. the polynomials whose roots are all real. As the Laplacian
and adjacency matrix are both symmetric, the characteristic polynomials of graphs are
real-rooted, hence this concept of real-rootedness is related to what we are studying. In
general, if we consider two real-rooted polynomials, it is not guaranteed that we can get a
real-rooted polynomial. However, if we have two polynomials having a common interlacing,
then we can say more about their sum. This can be captured by the following theorem.

Theorem 3.7 (Common interlacing theorem). Let p1, . . . , pm ∈ R[z] be a set of real-
rooted polynomials of degree n with positive leading coefficient and let p∅ =

∑
i∈[m] pi. If

{pi : i ∈ [m]} have a common interlacing, then we have the following.
• p∅ is real-rooted.
• for each k ∈ [n], mini λk(pi) ≤ λk(p∅) ≤ maxi λk(pi).
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Proof. Let a1 ≤ · · · ≤ an be a common interlacing sequence for the polynomials p1, . . . , pm,
meaning that ak ≤ λk(pi) ≤ ak+1, and let an+1 be a large enough number so that
pi(an+1) > 0 for all i. As each pi has positive leading coefficient, they all have the
same sign at a1 and the same opposite sign at a2 etc so that it has negative sign at an
and positive sign at an+1. This implies that p∅ changes sign in the interval [a1, a2] so it
has to vanish in the interval by the intermediate value theorem.

So, it has at n real roots. Moreover, it is easy to see that such roots are sandwiched by
the smallest and the largest root of the polynomials pi’s on the interval [ak, ak+1]. □

The following lemma�swill be useful for us later.

Lemma 3.8. Let p, q be polynomials of degree n and n− 1, and let pt(x) = p(x)− tq(x).
If pt is real-rooted for all t ∈ R, then q interlaces p.

Proof. If they have common roots α we divide (x−α) on both polynomial to assume that
their roots are distinct. If q does not interlace p, then p has two roots λi < λi+1 where q
has no roots in [λi, λi+1]. As t can be both positive and negative, we lose no generality by
assuming that p and q both are positive on the interval (λi, λi+1). For small t, pt(x) has
two roots in the interval, but for large t, it has no real roots in the interval. As t increase,
the roots continuously vary and do not cross λi and λi+1, this yields a contradiction to
the real-rootedness of pt(x).

□
Lemma 3.9. If p, q are polynomials with positive leading coefficients of degree n and
t · p(x) + (1− t)q(x) is real-rooted for all t ∈ [0, 1], then p and q have common interlacing.

Proof. Assume that p, q have no common roots. Let λ1 ≤ · · · ≤ λn and µ1 ≤ · · · ≤ µn be
the roots of p(x) and q(x), respectively. If they don’t have a common interlacing, up to
swapping p and q, we have µi < λi−1 ≤ λi < µi+1 for some i. Without loss of generality,
assume n− i is odd. Then p(x) is positive on (λi−1, λi) and q(x) is negative on the interval
[λi−1, λi]. Similarly as before, continuously decreasing t from 1 to 0 will move the roots of
tp(x) + (1− t)q(x) in a continuous way. And these roots lie within the interval [λi−1, λi].
However, when t = 0, there are not roots in this interval, so these roots become complex
at some point, a contradiction that this is real-rooted for all t. □

More generally, the following theorem characterizes the polynomials with common in-
terlacing.

Theorem 3.10 (Dedieu, 1992). Let p1, . . . , pm ∈ R[x] be polynomials of degree n with
positive leading coefficients. Then p1, . . . , pm have a common interlacing if and only if
all convex combinations of p1, . . . , pm are real-rooted polynomials, i.e.

∑
i∈[m] λipi is real-

rooted for all λi ≥ 0 with
∑

i∈[m] λi = 1.

The following fact is also useful for us later.

Lemma 3.11. Let p, q be polynomials of degree n and n− 1 such that q interlaces p and
both have positive leading coefficients. For every t > 0, define pt(x) = p(x)− tq(x). Then
pt(x) is real-rooted and p(x) interlaces pt(x).

Proof sketch of the lemma. As p, q are interlacing, we know what sign does q(x) have at
the i-th root λi of p(x). This yields a root in [λi, λi+1] for every i, and yields the desired
statement. □

Also, the following theorem provides particular instances where the interlacing occur,
which follows from Lemma 3.6.

Theorem 3.12 (Cauchy interlacing theorem). Let A ∈ Rn×n be a symmetric matrix and
v ∈ Rn. Then the characteristic polynomial χA(x) interlaces χA+vvT (x).
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Moreover, we can express χA+vvT (x) in terms of χA(x). For this, we need the following
lemma.

Lemma 3.13 (Matrix-determinant lemma). det(A+ uvT ) = (1 + vTA−1u) det(A).

Proof. We know that(
I 0
vT 1

)(
I + uvT u

0 1

)(
I 0

−vT 1

)
=

(
I u
0 1 + vTu

)
Taking determinant, we obtain det(I + uvT ) = 1 + vTu. Hence, we have det(A+ uvT ) =
det(A) det(I +A−1uvT ) = det(A)(1 + vTA−1u). □

By this lemma, we have
det(xI −A− vvT ) = (1− vT (xI −A)−1v) det(xI −A).

Assume v ̸= 0 as this is trivial otherwise. Let λ1, . . . , λn be the eigenvalues of A and
u1, . . . , un be orthonormal eigenvectors corresponding to λ1, . . . , λn. Then we have A =∑

λiuiu
T
i , and orthonormality implies

∑
uiu

T
i = I. Thus we have xI−A =

∑
i(x−λi)uiu

T
i

so we have
(xI −A)−1 =

∑
i∈[n]

1

x− λi
uiu

T
i .

Hence, we have

1− vT (xI −A)−1v = 1−
∑
i

1

x− λi
vTuiu

T
i v = 1−

∑
i

|⟨ui, v⟩|2

x− λi
.

Thus, we have

χA+vvT (x) = χA(x) ·

(
1−

∑
i

|⟨ui, v⟩|2

x− λi

)
.

This roughly says that the eigenvalues µ of A + vvT is either an eigenvalue of A, or
when f(µ) =

∑
i
|⟨ui,v⟩|2
x−λi

becomes 1. As this function maps (λi, λi+1) to R bijectively for
i ∈ [n−1] (it also maps (λn,∞) to R+), we can also use this to show the Cauchy-interlacing
theorem. Note that the value of f(·) indicates some bound on the new eigenvalues.

3.3. Linear size sparsifiers. Using eigenvalue interlacing techniques, we can prove that
there exists a graph H with linearly many edges approximating a given graph G.

Theorem 3.14. [1] For every d > 1 and every undirected weighted graphs G = (V,E,w)
with n = |V |, m = |E| there is a weighted subgraph H with d(n− 1) edges that satisfies

LG ≼ LH ≼ d+ 1 + 2
√
d

d+ 1− 2
√
d
LG.

If we choose d = 100
ε2

then we have d+1+2
√
d

d+1−2
√
d
≤ 1 + ε. This proves that there is a graph

H with d(n − 1) = O( n
ε2
) edges such that LG ≼ LH ≼ (1 + ε)LG. Note that the best ε

we can get here is roughly 4
√
d−1
d , which is roughly twice of 2

√
d−1
d . As we saw last year,

Alon-Boppana theorem yields that this is roughly twice of best possible value.
We will prove the following theorem.

Theorem 3.15. Let d > 1 and v1, . . . , vm ∈ Rn with
∑

i viv
T
i = I. Then there is a subset

S ⊆ [m] with |S| ≤ dn and nonzero scalars si > 0 for all i ∈ S, such that

I ≼
∑
i∈S

siviv
T
i ≤ (

d+ 1 + 2
√
d

d+ 1− 2
√
d
)I.
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Let’s first see how this theorem imply what we want. Assume that G is a connected
graph because we can find approximations for each component and take a disjoint union.
As we know LG = KTK for edge-vertex signed incidence weighted graph K. Consider the
matrix M = L

+/2
G KT and its column vectors v1, . . . , vm. (This is exactly same as taking

the vectors L
+/2
G LabL

+/2
G for each edge ab ∈ E(G).) Then we have∑

i

viv
T
i = L

+/2
G KTK(L

+/2
G )T = L

+/2
G LGL

+/2
G = Π.

As Π is an identity on the image of LG (which is isomorphic to Rn−1), the above theorem
yields a subset S ⊆ [m] of size at most d(n− 1) and numbers si for i ∈ S such that

Π ≼
∑
i∈S

siviv
T
i ≼ (

d+ 1 + 2
√
d

d+ 1− 2
√
d
)Π.

Let MS be the m by m diagonal matrix with i-th component si for i ∈ S and 0 for
i /∈ S. Note that M

1/2
S K is an edge-vertex incidence matrix obtained by deleting some

some edges and rescaling some edge weights from G. So LH = KTMSK is the Laplacian
of the subgraph H with edge weights wisi. As we know

∑
i∈S siviv

T
i = L

+/2
G LHL

+/2
G , we

have LG ≼ LH ≼ (d+1+2
√
d

d+1−2
√
d
)LG.

Now, we aim to show that Theorem 3.15 holds. We say the vectors are in isotropic
position if their outer products sums to the identity. In order to prove the theorem, we
will choose vi one by one. In fact, Cauchy’s interlacing theorem states that all eigenvalues
march forward when we add vvT to a matrix A.

Assume A is the matrix we have by adding the chosen vectors so far. For eigenvalues
λ1, . . . , λn and corresponding orthonormal eigenvectors u1, . . . , un, if we choose vi uni-
formly at random, then we have

E[
∑
j

(vTi uj)
2] =

1

m

∑
j

uTj viv
T
i uj =

1

m

∑
j

uTj uj =
1

m
.

This shows that, in expectation, all eigenvalues of A will shift by the same amount 1/m.
So we can expect that all eigenvalues are more or less t/m after adding t vectors randomly
chosen from v1, . . . , vm.

We will prove that this indeed happens. Let’s compute the expected characteristic
polynomial for A+ vvT . Recall Lemma 3.13.

Let Aj be the matrix we obtain by adding vvT for j random vectors v chosen from {vi}.
Using matrix-determinant lemma, we have

χA+vvT (x) = (1− vT (xI −A)−1v)χA(x).

As A =
∑

λiuiu
T
i and I =

∑
uiu

T
i by orthonormality of u1, . . . , un, so we have xI −A =∑

(x− λi)uiu
T
i . Hence, (xI −A)−1 =

∑n
i=1

1
x−λi

uiu
T
i . Thus

1− vT (xI −A)−1v = 1−
n∑

i=1

1

x− λi
vTuiu

T
i v = 1−

n∑
i=1

(uTi v)
2

x− λi
.

So,

χA+vvT (x) = χA(x)(1−
n∑

i=1

(uTi v)
2

x− λi
).

Hence, in expectation, we have

EχA+vvT (x) = χA(x)(1−
1

m

∑
j

1

x− λj
).
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As det(xI −A) =
∏

i(x− λi), we know that

EχAi+1(x) = χAi(x)−
1

m
χ′
Ai
(x).

So, if we actually choose ‘average of v’ every time, then we have

χAj (x) = (1− 1

m

d

dx
)jχA0(x) = (1− 1

m

d

dx
)jxn.

the set of such polynomials forms a family of orthonormal polynomials known as Laguerre
polynomials. It is known that when j = dn, we have λmax(Aj)

λmin(Aj)
= d+1+2

√
d

d+1−2
√
d
. This is pre-

cisely the bound we hope for. However, as we are not choosing ‘the average’ vector from
v1, . . . , vm, we actually have to make a specific choice. So we need more complicated
argument with the roles of weight si.

We now start the proof of Theorem 3.15. The following well-known lemma is useful.
Lemma 3.16 (Sherman-Morrison). For nonsingular symmetric matrix A and a vector v,
we have

(A− vvT )−1 = A−1 +
A−1vvTA−1

1− vTA−1v
.

For a symmetric matrix A with eigenvalues λ1 ≤ · · · ≤ λn and values ℓ, u ∈ R, we define
lower/upper barrier function as

Φℓ(A) = tr((A− ℓI)−1) =
n∑

i=1

1

λi − ℓ
, and Φu(A) = tr((uI −A)−1) =

n∑
i=1

1

u− λi
.

This is roughly the expression we saw before, which provides some bound on the eigenvalues
of the new matrix A+ vvT . When u is an upper bound on the largest eigenvalue λn of A,
Φu(A) being small means that it is an upper bound with a room to spare, while Φu(A)
being large means that it slightly over λn. At the time, we have an upper bound uold with
λn ≤ uold. We want to choose s, v and unew so that unew is a better (or at least not worse)
upper bound of the largest eigenvalue of A + svvT than uold is of A. In other words, we
want Φunew(A+ svvT ) ≤ Φuold(A). The following lemma tells us for which choices of s, v
we can get such a conclusion.
Lemma 3.17 (Shifting upper barrier). Let A be a symmetric n by n matrix and let v ∈ Rn

be any vector. Let uold > 0 satisfy λmax(A) < uold and unew = uold + δ for some δ > 0.
Let s > 0. If

UA(v) :=
vT (unewI −A)−2v

Φuold(A)− Φunew(A)
+ vT (unewI −A)−1v ≤ 1

s
,

then we have
Φunew(A+ svvT ) ≤ Φuold(A) and λmax(A+ svvT ) ≤ unew.

Proof. By Sherman-Morrison lemma, we have
Φunew(A+ svvT ) = tr((unewI −A− svvT )−1)

= tr

[
(unewI −A)−1 +

s(unewI −A)−1vvT (unewI −A)−1

1− svT (unewI −A)−1v

]
= tr

[
(unewI −A)−1

]
+

s · tr
[
(unewI −A)−1vvT (unewI −A)−1

]
1− svT (unewI −A)−1v

= Φunew(A) +
vT (unewI −A)−2v

1/s− vT (unewI −A)−1v

= Φuold(A)− (Φuold(A)− Φunew(A)) +
vT (unewI −A)−2v

1/s− vT (unewI −A)−1v
.
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Here, 1/s ≥ UA(v) > vT (unewI − A)−1v and Φuold(A) − Φunew(A) > 0, we know that the
denominator 1/s− vT (unewI −A)−1v is positive. However, we know that

−(Φuold(A)− Φunew(A)) +
vT (unewI −A)−2v

1/s− vT (unewI −A)−1v
≤ 0

from the assumption that UA(v) ≤ 1
s . This proves Φunew(A+ svvT ) ≤ Φuold(A).

From the above, for any t ≤ s, we have that Φunew(A + tvvT ) ≤ Φuold(A) is finite,
as 1/s ≤ 1/t. If λmax(A + svvT ) ≥ unew, then there exists some 0 ≤ s′ ≤ s with
λmax(A + s′vvT ) = unew, then we have Φunew(A + s′vvT ) = ∞, a contradiction. Hence
λmax(A+ svvT ) ≤ unew holds. □

Similarly, we can obtain a condition for finding a good new lower bound.

Lemma 3.18 (Shifting lower Barrier). Let A be a symmetric n by n matrix and let
v ∈ Rn be any vector. Let ℓold > 0 satisfy λmin(A) > ℓold and ℓnew = ℓold + δ for some
0 < δ ≤ 1

Φℓold
(A) . Let s > 0. If

LA(v) :=
vT (ℓnewI −A)−2v

Φℓnew(A)− Φℓold(A)
− vT (A− ℓnewI)

−1v ≥ 1

s
> 0,

then we have

Φℓnew(A+ svvT ) ≤ Φℓold(A) and λmin(A+ svvT ) > ℓnew.

Proof. As λmin(A) > ℓold, all eigenvalues of A are strictly larger than ℓold. Hence 1
λi−ℓold

>

0 for all i ∈ [n]. As Φℓoold(A) =
∑ 1

λi−ℓold
≤ 1

δ , we have 1
λmin(A)−ℓold

< 1
δ . This shows that

λmin(A) > ℓold + δ = ℓnew. Hence, for every s > 0, we have λmin(A+ svvT ) > λmin(A) >
ℓnew. This shows the second inequality.

To prove the first inequality, use Sherman-Morrison lemma, we have

Φℓnew(A+ svvT ) = tr((A+ svvT − ℓnewI)
−1)

= tr

[
(A− ℓnewI)

−1 − s(A− ℓnewI)
−1vvT (A− ℓnewI)

−1

1− svT (A− ℓnewI)−1v

]
= tr

[
(ℓnewI −A)−1

]
−

s · tr
[
(A− ℓnewI)

−1vvT (A− ℓnewI)
−1
]

1− svT (A− ℓnewI)−1v

= Φℓnew(A)−
vT (A− ℓnewI)

−2v

1/s− vT (A− ℓnewI)−1v

= Φℓold(A) + (Φℓnew(A)− Φℓold(A)) +
vT (A− ℓnewI)

−2v

1/s− vT (A− ℓnewI)−1v
.

Thus, it suffices to prove

(Φℓnew(A)− Φℓold(A)) +
vT (A− ℓnewI)

−2v

1/s− vT (A− ℓnewI)−1v
≤ 0,

which comes from the assumption that LA(v) ≥ 1/s. □

The eigenvalues all will increase in the process of adding viv
T
i , and the upper bound and

lower bound all will increase in the process. The upper bound and the largest eigenvalues
both increase, so we want the upper bound to not increase too little. On the other hand,
the lower bound and the smallest eigenvalues both increase, so we want the lower bound
to not increase too much. This asymmetry causes some problem in the later proof, and
the following lemma is useful to deal with the issue.
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Lemma 3.19. Suppose that λmin(A) > ℓold and 0 ≤ Φℓold(A) ≤ ε and 1/δ − ε ≥ 0. Then∑
i∈[n](λi − ℓnew)

−2

δ
∑

i∈[n](λi − ℓnew)−1(λi − ℓold)−1
− Φℓnew(A) ≥ 1

δ
− Φℓold(A).

Proof. We have δ ≤ 1/ε. As 1
λmin(A)−ℓold

<
∑ 1

λi−ℓold
= Φℓold(A) ≤ ε, we have λmin(A) −

ℓold > 1/ε ≥ δ. Using this, we have λmin(A) > ℓold+δ = ℓnew. Thus for each i, (λi−ℓnew)
−1

is positive.
Rearranging the desired result yields that

∑
i∈[n]

(λi − ℓnew)
−2 ≥

(
1

δ
+Φℓnew(A)− Φℓold(A)

)δ
∑
i∈[n]

(λi − ℓnew)
−1(λi − ℓold)

−1


=

1

δ
+ δ

∑
i∈[n]

(λi − ℓnew)
−1(λi − ℓold)

−1

δ
∑
i∈[n]

(λi − ℓnew)
−1(λi − ℓold)

−1


=
∑
i∈[n]

(λi − ℓnew)
−1(λi − ℓold)

−1 +

δ
∑
i∈[n]

(λi − ℓnew)
−1(λi − ℓold)

−1

2

.

This is equivalent to the following.

δ
∑
i∈[n]

(λi − ℓnew)
−2(λi − ℓold)

−1 ≥

δ
∑
i∈[n]

(λi − ℓnew)
−1(λi − ℓold)

−1

2

. (3.1)

So, it suffices to prove (3.1).
Let x, y ∈ Rn be the vectors with entries xi = (λi−ℓold)

−1/2 and yi = (λi−ℓnew)
−1(λi−

ℓold)
−1/2 respectively. Then the right side becomes δ2(xT y)2. Using Cauchy-Schwarz

inequality and the fact that 1 ≥ δε, we have

δ2(xT y)2 ≤ δ2∥x∥2∥y∥2 = δ

∑
i∈[n]

(λi − ℓold)
−1

δ
∑
i∈[n]

(λi − ℓnew)
−2(λi − ℓold)

−1


= δΦℓold(A)

δ
∑
i∈[n]

(λi − ℓnew)
−2(λi − ℓold)

−1


≤ δε

δ
∑
i∈[n]

(λi − ℓnew)
−2(λi − ℓold)

−1


≤ δ

∑
i∈[n]

(λi − ℓnew)
−2(λi − ℓold)

−1.

This proves the lemma.
□

Now, we prove the following key lemma.

Lemma 3.20 (Barrier shifting lemma). Let A be an n by n symmetric real matrix. Let
uold, ℓold > 0 be numbers satisfying λmax(A) < uold and λmin(A) > ℓold. Let εu, εℓ, δu, δℓ
satisfy Φuold(A) ≤ εu,Φℓold(A) ≤ εℓ and

0 ≤ 1

δu
+ εu ≤ 1

δℓ
− εℓ.
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Let unew = uold + δu and ℓnew = ℓold + δℓ. Then there exists i ∈ [m] and s > 0 such that
the following holds.

(1) UA(vi) ≤ 1
s ≤ LA(vi).

(2) λmax(A+ sviv
T
i ) < unew.

(3) λmin(A+ sviv
T
i ) > ℓnew.

(4) Φunew(A+ sviv
T
i ) ≤ εu.

(5) Φℓnew(A+ sviv
T
i ) ≤ εℓ.

Proof. In order to use the previous two lemmas, we want to find s and i satisfying

UA(vi) ≤
1

s
≤ LA(vi).

To make sure such a choice exists, we aim to show that
∑

i∈[m] UA(vi) ≤
∑

i∈[m] LA(vi).

Note that for a matrix M , we have tr(M) = tr[
∑

i(Mvi)v
T
i ] = tr[

∑
i v

T
i (Mvi)]. Using this,

we have ∑
i∈[m]

UA(vi) =

∑
i∈[m] v

T
i (unewI −A)−2vi

Φuold(A)− Φunew(A)
+
∑
i∈[m]

vTi (unewI −A)−1vi

=
tr[(unewI −A)−2]

Φuold(A)− Φunew(A)
+ tr[(unewI −A)−1]

=

∑
i∈[m](unew − λi)

−2∑
i∈[m]((uold − λi)−1 − (unew − λi)−1)

+ Φunew(A)

=

∑
i∈[m](unew − λi)

−2

δu
∑

i∈[m]((uold − λi)−1(unew − λi)−1)
+ Φunew(A)

<
1

δu
+Φunew(A) ≤ 1

δu
+Φuold(A) ≤ 1

δu
+ εu.

We have the final line as unew > uold implies
∑

i∈[m](unew − λi)
−2 <

∑
i∈[m]((uold −

λi)
−1(unew − λi)

−1). Similarly, we have

∑
i∈[m]

LA(vi) =

∑
i∈[m] v

T
i (A− ℓnewI)

−2vi

Φℓnew(A)− Φℓold(A)
+
∑
i∈[m]

vTi (A− ℓnewI)
−1vi

=
tr[(A− ℓnewI)

−2]

Φℓnew(A)− Φℓold(A)
+ tr[(A− ℓnewI)

−1]

=

∑
i∈[m](λi − ℓnew)

−2∑
i∈[m]((λi − ℓnew)−1 − (λi − ℓold)−1)

+ Φℓnew(A)

=

∑
i∈[m](λi − ℓnew)

−2

δℓ
∑

i∈[m]((λi − ℓnew)−1(λi − ℓold)−1)
+ Φℓnew(A).

Here, unlike the case before, the number ℓnew is bigger than ℓold, so there’s no guarantee
that ℓnew is smaller than λi, so we don’t know if (λi − ℓnew)

−1 > (λi − ℓold)
−1 holds.

However, Lemma 3.19 still yields that the above number is at least 1
δℓ
−Φℓold(A) ≥ 1

δℓ
−εℓ.

Thus, we have ∑
i∈[m]

UA(vi) ≤
1

δu
+ εu ≤ 1

δℓ
− εℓ ≤

∑
i∈[m]

LA(vi).

This shows that there exists an i ∈ [m] such that 0 < UA(vi) ≤ LA(vi), so choose s so that
UA(vi) ≤ 1

s ≤ LA(vi). For this choice of i and s, we have
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(1) λmax(A+ sviv
T
i ) < unew and Φunew(A+ sviv

T
i ) ≤ Φuold(A) ≤ εu by Shifting upper

Barrier Lemma.
(2) λmin(A + sviv

T
i ) > ℓnew and Φℓnew(A + sviv

T
i ) ≤ Φℓold(A) ≤ εℓ by Shifting lower

Barrier Lemma.
This finishes the proof. □

Finally, we prove Theorem 3.15.
Let

δℓ = 1, δu =

√
d+ 1√
d− 1

, εℓ =
1√
d
, εu =

√
d− 1

d+
√
d
, ℓ0 =

−n

εℓ
, u0 =

n

εu
.

Then we have 1
δu

+ εu = 1
δℓ

− εℓ.
Let A0 be the empty matrix. For each 0 ≤ j ≤ dn− 1, we will choose vi and s and let

Aj+1 = Aj + sviv
T
i . Initially, we have ℓ0 < λmin(A0) = 0 = λmax(A0) < u0 and

Φu0(A0) = tr[(u0I)
−1] =

n

u0
= εu,

Φℓ0(A0) = tr[(−ℓ0I)
−1] =

n

−ℓ0
= εℓ.

For each i ∈ [dn], let ui = u0 + iδu and ℓi = ℓ0 + iδℓ. Assume that in jth turn, we have
ℓj < λmin(Aj) ≤ λmax(Aj) < uj

Φuj (Aj) ≤ εu,Φℓj (Aj) ≤ εℓ.

By Lemma 3.20, there exists i ∈ [m] and sj > 0 such that Aj+1 = Aj+sjviv
T
i which yields

ℓj+1 < λmin(Aj+1) ≤ λmax(Aj+1) < uj+1

Φuj+1(Aj+1) ≤ εu,Φℓj+1
(Aj+1) ≤ εℓ.

By running this until we have Adn, we obtain a set S ⊆ [m] of size at most dn. Then
we have

(d−
√
d)n = ℓ0+dnδℓ = ℓdn ≤ λmin(Adn) ≤ λmax(Adn) < udn = u0+dnδu =

√
d(
√
d+ 1)2√
d− 1

n.

Hence, A =
√
d−1

d
√
dn

Adn satisfies

(
√
d− 1)2

d
≤ λmin(A) ≤ λmax(A) ≤ (

√
d+ 1)2

d
.

This proves what we want.
Note that this proof naturally yields an algorithm for constructing a spectral sparsifier

which runs in O(dn3m) time.
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4. Bipartite Ramanujan graphs via lifts

Recall that last year we proved Alon-Boppana theorem, which states that any graph has
its second largest eigenvalue at least 2

√
d− 1− ε. This motivates the following definition

regarding how strong an expander can be.

Definition 4.1 (Ramanujan graph). A d-regular graph is Ramanujan if every eigenvalue
of its adjacency matrix except the largest one is between −2

√
d− 1 and 2

√
d− 1. A d-

regular bipartite graph is Ramanujan if every eigenvalue of tis adjacency matrix except the
largest and smallest one is between −2

√
d− 1 and 2

√
d− 1.

It is widely believed that a random d-regular graph has a good probability to be a
Ramanujan graph.

In 2004, Friedman proved that λi(G) ≤ 2
√
d− 1+ ε holds for all i > 1 with probability

1 − O(n⌈(
√
d−1+1)/2⌉−1). Miller-Novikoff-Sabelli empirically showed that the largest non-

trivial positive eigenvalue and the smallest nontrivial negative eigenvalue of a d-regular
graph follows some distribution called a Tracy-Widom distribution. It is conjectured that
approximately 52% of d-regular bipartite graphs are Ramanujan and approximately 27%
of d-regular non-bipartite graphs should be Ramanujan.

Also, d-regular graphs of degree d are known to exist for infinitely many d. Lubotzky,
Phillips, Sarnak, 1986 and Margulis 1988, Morgenstern 1994 showed them. They used
number theoretic constructions. Here, we will provide a more flexible approach to build
a bipartite Ramanujan graphs. The result is from [5] and the proof uses techniques form
[7].

4.1. Interlacing families. We will consider a notion called interlacing families. Ideally,
we want to show that out of whole choices of graphs, a random graph is Ramanujan with a
positive probability. In some sense, there are huge set of characteristic polynomials where
the expectation of them is like a characteristic polynomial of a Ramanujan graph. In such
a situation, we want to be able to choose one polynomial from the set which acts like the
expectation. This is possible if all such polynomials have a common interlacing.

However, hoping that all of them has a common interlacing is too much. Still, we want
to somehow have control on the roots of (at least) one of the polynomials. More precisely,
we want to conclude that the maximum root of one of the polynomials is upper bounded
by the maximum root of the average (equivalently the sum) of the polynomials. We can
achieve this by enforcing some layered structures among the polynomials as follows.

Definition 4.2 (Interlacing families). Let S1, . . . , Sm be finite sets and S =
∏

i Si. For
each s = (s1, . . . , sm) ∈ S, we have a polynomial ps with positive leading coefficient. For
each k ∈ [m] and partial tuple s = (s1, . . . , sk) ∈

∏
i∈[k] Si, let

ps =
∑

(sk+1,...,sm)∈
∏

i>k Si

p(s1,...,sm) and p∅ =
∑
s∈S

ps.

We say that the polynomials {ps : s ∈ S} form an interlacing family if for each 0 ≤ k ≤
m − 1 and (s1, . . . , sk) ∈

∏
i∈[k] Si, the polynomial {ps1,...,sk,t : t ∈ Sk+1} have a common

interlacing.

With this definition, we can prove the following theorem.

Theorem 4.3. Let S1, . . . , Sm be finite sets and let {ps : s ∈
∏

i∈[m] Si} be an interlacing
family of polynomials. Then for every 0 ≤ k ≤ m, there exist (s1, . . . , sk) ∈

∏
i∈[m] Si such

that the largest root of ps1,...,sk is upper bounded by the largest root of p∅.

Proof. When k = 0, the statement is trivial as the largest root of p∅ is at most the largest
root of p∅.
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Assume that there exists 0 ≤ k ≤ m− 1 such that the largest root of ps1,...,sk is at most
the largest root of p∅. Then we have

ps1,...,sk =
∑

t∈Sk+1

ps1,...,sk,t.

Since {ps1,...,sk,t : t ∈ Sk+1} has a common interlacing, there exists sk+1 ∈ Sk+1 such that
the largest root of ps1,...,sk+1

is at most the largest root of ps1,...,sk , which is at most the
largest root of p∅ by the induction hypothesis. □

As a corollary, we obtain the following.

Corollary 4.4. Let D1, . . . ,Dm be independent probability distribution with the outcome
of Di in Si. Let P = {ps1,...,sm : si ∈ Si} be an interlacing family. Then there exists
(s1, . . . , sm) ∈

∏
i∈[m] Si such that the largest root of ps1,...,sm is at most the largest root of

Esi∼Di [ps1,...,sm(x)].

Proof of this corollary is straightforward. Let s ∼ D1 × · · · × Dm. Note that the
P[s = (s1, . . . , sm)] · ps1,...,sm has the same root as ps1,...,sm . So, the summation can be
converted into weighted average, so direct application of the previous theorem yields this
corollary. Expression the interlacing families in terms of probability distribution makes
analysis more convenient.

Together with Theorem 3.10, the interlacing condition on the above P can be restated
as follows.

Corollary 4.5. Let D1, . . . ,Dm be independent probability distribution with the outcome
of Di in Si. Let P = {ps1,...,sm : si ∈ Si}. If

Exi∼Di [px1,...,xm(x)]

is real-rooted for any independent probability distribution Di on Si, then there exists
(s1, . . . , sm) ∈

∏
i∈[m] Si such that the largest root of ps1,...,sm is at most the largest root of

Esi∼Di [ps1,...,sm(x)].

Note that E xi∼Di
for i>k

[ps1,...,sk,xk+1,...,xm(x)] can be expressed as E[px1,...,xm(x)] where xi is
si with probability 1 for i ≤ k, and xi ∼ Di for i > k. So, the condition on the above
corollary ensures that every convex combination of the polynomials on the children of any
internal vertex in the interlacing tree is real-rooted. Hence, Theorem 3.10 implies that
they form an interlacing family.

4.2. 2-covers. Bilu and Linial in 2006 used the idea of lifting a graph to construct large
expanders. This lifting can be formalized by the following notion of covers.

Definition 4.6. Let G = (V,E) be a graph with |E| = m. Let s : E → {−1,+1} be
a signing of the edges of G. Then the 2-cover Gs of G associated with s is the graph
Gs = (Vs, Es) whose vertices and edges can be labeled as Vs = {uL, uR : u ∈ V } and
Es = {(uL, vL)(uR, vR) : uv ∈ E, s(uv) = 1} ∪ {(uL, vR)(uR, vL) : uv ∈ E, s(uv) = −1}.

It is easy to see that when G is a bipartite graph, Gs is also a bipartite graph for any
signing s. It is known that the eigenvalues of a 2-cover Gs can be related to the eigenvalues
of the base graph G.

Lemma 4.7. Let G be a graph and A be its adjacency matrix, and As be the signed
adjacency matrix of A with respect to a signing s of the edges. Let Gs be the 2-cover of G
and let B be its adjacency matrix. Then every eigenvalue of A and every eigenvalue of As

is an eigenvalue of B. Furthermore, the multiplicity of each eigenvalue of B is the sum of
its multiplicities in A and As.
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The eigenvalues of A are called ‘old eigenvalues’ and the eigenvalues of As are called ‘new
eigenvalues’. It was conjectured by Bilu and Linial that every for every d-regular graph G,
one can find a signing s where all new eigenvalues of Gs are in [−2

√
d− 1, 2

√
d− 1]. We

will prove this conjecture for bipartite graph G. This will allow us to obtain another d-
regular Ramanujan graph on 2n vertices from a d-regular Ramanujan graph on n vertices.

In order to find a desired signing, we will prove the following.
• {det(xI −As)}s∈{±1}m forms an interlacing family.
• the maximum root of

∑
s det(xI − As) (equivalently Es[det(xI − As)]) is at most

2
√
d− 1.

Note that this provides an upper bound on the maximum root, but not a lower bound
on the smallest root. However, if the original graph we start with is bipartite, then upper
bound on the smallest root automatically imply the lower bound as the eigenvalues of
bipartite graphs are symmetric around zero. Hence, this proves what we want.

We will do the second job first. Consider the matching polynomial MG(x) of G defined
by

MG(x) =
∑

0≤k≤n/2

(−1)kmkx
n−2k,

where mk is the number of matchings with k edges in G with m0 = 1. We can prove the
following theorem.

Theorem 4.8. When s ∈ {±1}m is chosen uniformly at random, we have
E[det(xI −As)] = MG(x).

Proof. For a permutation σ ∈ Sn, let Fix(σ) be the set of fixed points of σ and let
fix(σ) = |Fix(σ)|. We know that

det(xI −As) =
∑
σ∈Sn

sign(σ)
n∏

i=1

(xI −As)i,σ(i) =
∑
σ∈Sn

sign(σ)xfix(σ)
∏

i/∈Fix(σ)

As(i, σ(i)).

So, we have

E[det(xI −As)] =
∑
σ∈Sn

sign(σ)xfix(σ)E

 ∏
i/∈Fix(σ)

As(i, σ(i))

 .

Here, we know that E[S(i, σ(i))] = 0 for every i where σ(i) ̸= i. So, if the term inside the
expectation is linear in terms of As(i, σ(i)), then this contributes zero to the computation.
Only possible way to make a nonzero contribution is when iσ(i) ∈ E and σ(σ(i)) = i. In
this case, we know that S(i, σ(i))S(σ(i), i) = 1. Thus the only permutations that count
are the involutions. As an involution with n− 2k fixed points have a sign (−1)k, we have

E[det(xI −As)] =
∑
σ∈Sn

sign(σ)xfix(σ)E

 ∏
i/∈Fix(σ)

As(i, σ(i))

 =
∑
k

(−1)kmkx
n−2k

□

On the other hand, it is known that the following theorem holds. We omit the proof.

Theorem 4.9 (Godsil 93). Let G be a graph with the maximum degree at most d. Then
MG(x) is real-rooted and the largest root is at most 2

√
d− 1.

Now, we prove that the polynomials {det(xI−As)}s∈{±1}m forms an interlacing family.
Choose an ordering on the m edges of the graph. We can now associate s ∈ {±1}k with
ps = Es′∼{±1}m−k [χ(As,s′)].
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Theorem 4.10. Let v1, . . . , vk be independently distributed random n-dimensional vectors
and let A be a symmetric n-dimensional matrix. Then the polynomial

E

χ(A+
∑
i∈[k]

viv
T
i )


is real-rooted. Moreover, for every vector u in the support of vk, all polynomials

E

χ(A+ uuT +
∑

i∈[k−1]

viv
T
i )


have a common interlacing

Proof. We prove this by induction on k. Assuming that we have proved it for k, we now
prove it for k+1. Let u be any vector and t ∈ R. Let pt(x) = E[χ(A+tuuT +

∑
i∈[k] viv

Y
i )].

By Lemma 3.6, we have pt(x) = p0(x)− tq(x) for some polynomial q of degree n− 1. By
induction hypothesis applied to A + tuuT , the polynomial pt(x) is real-rooted for all t.
Thus Lemma 3.8 implies that q(x) interlaces p0(x).

On the other hand, Lemma 3.11 tells that p0(x) interlaces pt(x). So, we may conclude
that for any u ∈ Rn,

E[χ(A+
∑
i∈[k]

viv
T
i )] interlaces E[χ(A+ uuT +

∑
i∈[k]

viv
T
i )].

Now, choose u from the support of vk+1 and apply Theorem 3.7 to conclude that (if p
interlaces qi where all has positive leading coefficients, then p also interlaces a convex
combination of qi)

E[χ(A+
∑
i∈[k]

viv
T
i )] interlaces E[χ(A+ vk+1v

T
k+1 +

∑
i∈[k]

viv
T
i )]

and that the latter polynomial is real-rooted. □
For every edge ab of G, let va,b be the random vector that is 1a−1b with probability 1/2

and 1b + 1a with probability 1/2. Then the random matrix As is distributed according to∑
ab∈E

va,bv
T
a,b − dI.

Subtracting dI shifts the roots by d, and so does not impact any results we have proved
about interlacing of real-rootedness. Also the expectation of the characteristic polynomial
is the matching polynomial, whose largest eigenvalue is at most 2

√
d− 1. This shows

that for a given d-regular bipartite Ramanujan graph on n vertices, we can find another
d-regular bipartite Ramanujan graph on 2n vertices.

However, if we also want to better control the number of vertices in such a Ramanujan
graph, then we can generalize the 2-cover to an r-cover. As ±1 can be identified with the
permutation S2, we can consider a choice of permutation in Sr. Using this, we can find
an n-vertex d-regular Ramanujan graph for all d and all n which has only small prime
factors.

One shortcoming of this proof is that it does not yield an explicit graph and does not
yield an efficient algorithm.
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5. Bipartite Ramanujan graphs via unions of matchings

Another way of proving the existence of Ramanujan graphs is to take a union of d
random perfect matchings. This was done by Marcus, Srivastava, Spielman in 2015. Of
course, to obtain a bipartite graph, we have to take a bipartition A∪B and take random
perfect matching between A and B. However, for simplicity, we just take d random perfect
matchings, and show that the second eigenvalue is smaller than 2

√
d− 1. These analysis

can be extended to obtain a bipartite Ramanujan graph. The result in this section comes
from [6].

5.1. Interlacing. We first show the following theorem. In the end, we want to keep
adding ΠMΠT to our matrix where M is an adjacency matrix of a perfect matching and
Π is a random permutation matrix. For this, let

pΠ1,...,Πd
(x) = χ(

∑
i∈[d]

ΠiMΠT
i ).

We wish to show that these polynomials form an interlacing family. We take a detour
so that we can use more elementary techniques. We will break the one choice of Πi into
many simpler choices so that it would be easier to analyze.

For i, j ∈ [n], let Γi,j be a permutation matrix swapping i and j. Let S be a random
matrix that is equal to Γi,j with probability s and equal to the identity with probability
1−s. We call this a random swap. Let σ : Sn → R≥0 be a probability distribution over the
permutations and consider the sum

∑
i∈[m]

∑
Π σ(Π)χ(Ai + ΠBΠT ). Let σ be realizable

by swaps if this distribution can be achieve by multiplication of random swaps.
We will choose some random swaps X1

1 , . . . , X
1
k , X

2
1 , . . . , X

d
k . Fix n by n matrices

M1, . . . ,Md. For each Ba
b ∈ supp(Xa

b ), we let

pB1
1 ,...,B

d
k
(x) = χ(

∑
i∈[d]

(Bi
k . . . B

i
1)Mi(B

i
k . . . B

i
1)

T .

In order to be able to apply Corollary 4.5 to these polynomials, it suffices to prove the
following.

Lemma 5.1. For any symmetric matrices M1, . . . ,Md and for any random swaps S1
1 , . . . , S

1
k1
, . . . , Sd

kd
,

the polynomials
E[pS1

1 ,...,S
d
kd

(x)]

is real-rooted.

The following lemma allows us to compute the expectation when we multiply a random
swap to a given matrix on both side.

Lemma 5.2. Let A be a symmetric matrix. Then for all i and j, there exists vectors u
and v such that

Γi,jAΓT
i,j = A− uuT + vvT .

Proof. We may assume i = 1, j = 2. As A − Γi,jAΓT
i,j is symmetric, it suffices to prove

that it has rank 2. It is easy to see that such a matrix has form α β yT

−β −α −yT

y −y 0


If α ̸= β, then every row is a linear combination of the first two rows. Otherwise, then the
first two rows are linearly dependent and all other rows are in the span of (1,−1, 0, . . . , 0).
Hence, it has rank 2. □

In order to prove what we want, we define two terminologies.
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Definition 5.3. Let p(A1, . . . , Ad) be a degree n homogeneous polynomial of the entries
of the matrices as variables. We call this polynomial p(A1, . . . , Ad) be ‘good’ if p(xI −
A1, . . . , xI −Ad) is real-rooted for any symmetric matrices A1, . . . , Ad. We call a degree n
polynomial p(Y1, . . . , Yd) be ‘nice’ if for any t and v ∈ Rn and i ∈ [d], p(xI −A1, . . . , xI −
Ai−1, xI −Ai − tvvT , xI −Ai+1, . . . , xI −Ad) = p(xI −A1, . . . , xI −Ad)− tq(x) holds for
some polynomial q of degree n− 1 with a positive leading coefficient.

The ‘goodness’ is referred as the hyperbolicity of the polynomial p(xI−A1, . . . , xI−Ad)
with respect to (I, I, . . . , I). For more on this concept, see [10]. The ‘niceness’ is essentially
the rank-1 linearity.

Note that by Lemma 3.6, p(A1, . . . , Ad) = det(A1 + · · ·+Ad) is a polynomial satisfying
both of the above two properties. We show the following.
Lemma 5.4. Let X be an arbitrary random swap. If the polynomial p(A1, . . . , Ad) is good
and nice, then EX [p(A1, . . . , Ai−1, XAi−1X

T , Ai+1, . . . , Ad)] is also good and nice.
Proof. Let X be Γa,b with probability s and I with probability 1−s. Then as Γa,bAiΓ

T
a,b =

A+−uuT + vvT , we have
EX [p(A1, . . . , Ai−1, XAi−1X

T , Ai+1, . . . , Ad)]

= s · p(A1, . . . , Ai − uuT − vvT , Ad) + (1− s)p(A1, . . . , Ad).

As this is a convex combination of two nice polynomials, it is easy to see that it is also
nice.

Fix an arbitrary vector v and u. Let rt(x) = p(xI−A1, . . . , xI−Ai− tvvT , . . . xI−Ad).
As p is nice, there exists a degree n − 1 polynomial q(x) with positive leading coefficient
such that

rt(x) = r0(x)− tq(x)

where both r0 and q has positive leading coefficients. As p is good, we know that rt(x) is
real-rooted for all t ∈ R. So, Lemma 3.8 implies that q(x) interlaces r0(x). Lemma 3.11
now implies that r0(x) interlaces r1(x).

By the same argument, we know that p(xI −A1, . . . , xI −Ai+uuT − vvT , . . . , xI −Ad)
interlaces r1(x).

Hence, both p(xI −A1, . . . , xI −Ai, . . . , xI −Ad) and p(xI −A1, . . . , xI −Ai + uuT −
vvT , . . . , xI−Ad) interlaces r1(x), so they have common interlacing. As for certain u and v,
we have Γa,bAiΓ

T
a,b = Ai−uuT + vvT , by Theorem 3.7, any convex combination of them is

real-rooted, this shows that the polynomial EX [p(A1, . . . , Ai−1, XAi−1X
T , Ai+1, . . . , Ad)]

is good. □
Hence, repeatedly applying this shows that E[Π1X1Π

T
1 , . . . ,ΠdXdΠ

T
d ] is real-rooted

where each Πi is a random matrix with distributions realizable by swaps.
Lastly we can show that a uniform random permutation can be generated from random

swaps.
Lemma 5.5. For every n, there exists a finite sequence of random swaps S1, . . . , Sk so
that S1 . . . Sk is a uniform random permutation.
Proof. We use induction on n. When n = 1, it is trivial. By induction hypothesis, we have
S1, . . . , Sk so that we have S1 . . . Sk is a uniform random permutation on [n − 1] which
fixes n. Let S be a random swap that swaps 1 and n with probability 1− 1/n. Then it is
easy to see that

S1 . . . SkSS1 . . . Sk

has the uniform distribution on Sn. □
Combining these results, we obtain that there exists a choice of Π1, . . . ,Πd where the

second largest eigenvalue of pΠ1,...,Πd
is at most the second largest eigenvalue of E[pΠ1,...,Πd

].
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5.2. Quadrature for the finite free convolution. We want to analyze what EΠ∈Sn [χ(A+
ΠBΠT )] is. This finite sum can be expressed by using the following integral.

Definition 5.6. Let p(x), q(x) are characteristic polynomials of A and B. Then their
finite free convolution is the polynomial

p(x)⊞n q(x) := EQ∈O(n)[χ(A+QBQT )].

Here, Q ∈ O(n) is a random orthonormal matrix chosen according to the Haar measure.
The Haar measure here is the probability distribution over O(n) that is invariant under
group operations, which are multiplication by orthonormal matrices. Note that the expec-
tation above does not depend on the eigenvectors of A and B, but only depends on the
eigenvalues (thus the characteristic polynomials). To see this, recall that one can find an
orthonormal matrix R mapping an orthonormal basis of A to another orthonormal basis
of A′ with the same eigenvalues, so that A = RA′RT . As Q ∈ O(n) is chosen according
to the Haar measure, Q and QT have the same distribution. So

E[χ(A+QBQT )] = E[χ(RA′RT +RQB(RQ)T )] = E[χ(A′ +QBQT )].

Similarly, B can be replaced with B′ having the same eigenvalues. With this, we know
the following. We will omit the proofs.

Theorem 5.7. Let A and B be symmetric matrices with constant row sums. If A1 = a1
and B1 = b1, then we know that the characteristic polynomials are

χ(A) = (x− a)p(x) and χ(B) = (x− b)q(x).

Then we have
EΠ∈Sn [χ(A+ΠBΠT )] = (x− a− b)(p(x)⊞n−1 q(x)).

Moreover,

Theorem 5.8. Let p(x) =
∑n

i=0(−1)iaix
n−1 and q(x) =

∑n
i=0(−1)ibix

n−i. Then

p(x)⊞n q(x) =
n∑

k=0

xn−k(−1)k
∑

i+j=k

(n− i)!(n− j)!

n!(n− i− j)!
aibj .

5.3. An upper bound on the roots. Now, we need to prove that the polynomial
EΠ[χ(A+ΠBΠT )]

has its root bounded. For given polynomial p(x) =
∏

i∈[d](x− λi), let

Gp(x) =
1

d

d∑
i=1

1

x− λi
=

p′(x)

d · p(x)

and let
Kp(w) = max{x : Gp(x) = w}

be the inverse Cauchy transform. This is similar to the Barrier from the Sparsifier as we
have the following.

Theorem 5.9. For polynomials p(x) and q(x) of degree n and for w > 0, we have

Kp⊞nq(w) ≤ Kp(w) +Kq(w)−
1

w
.

Combining this, we know that for p(x) = 1
x−1χ(M) = (x− 1)n/2−1(x+ 1)n/2, we have

Gp(x) =
1

n− 1
(
n/2− 1

x− 1
+

n/2

x+ 1
) ≤ x

x2 − 1
= Gχ(M)(x)
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where M is the adjacency matrix of a perfect matching. Also, we have
Kp(w) ≤ Kχ(M)(w)

for all w ≥ 0. Then the above theorem yields that

Kp⊞···⊞p(w) ≤ dKp(w)−
d− 1

w
≤ dKχ(M)(w)−

d− 1

w

is an upper bound on the largest root of p ⊞ · · · ⊞ p. Let w =
√
d−1
d−2 , then Kχ(M)(w) =√

d− 1. Then we have

dKp(w)−
d− 1

w
≤ d

√
d− 1− (d− 1)

d− 2√
d− 1

= d
√
d− 1− (d− 2)

√
d− 1 = 2

√
d− 1.

Note that Theorem 5.7 provides a polynomial-time method for computing the expected
characteristic polynomials.

However, this is not enough to obtain a polynomial time algorithm to construct a
bipartite Ramanujan graph.

In each time, we can n! choices of the permutation. For each permutation, we can
compute how the root of expected characteristic polynomial changes by the choice and
choose one permutation, and repeat d times. However, this yields O(dnn) time algorithm.
But, instead, one can choose an edge by edge rather than choosing one perfect matching.
One can show that this also yields an interlacing family with the same expectation. As we
only have to check n possibilities each time, and repeat dn times, this yields an efficient
algorithm. See [2] for more.
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